首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   7篇
  2021年   4篇
  2020年   1篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   7篇
  2011年   9篇
  2010年   11篇
  2009年   4篇
  2008年   14篇
  2007年   13篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   4篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1969年   2篇
  1965年   1篇
排序方式: 共有159条查询结果,搜索用时 203 毫秒
101.

Aims

The readily available global rock phosphate (P) reserves may be depleted within the next 50–130 years warranting careful use of this finite resource. We develop a model that allows us to assess a range of P fertiliser and soil management strategies for Barley in order to find which one maximises plant P uptake under certain climate conditions.

Methods

Our model describes the development of the P and water profiles within the soil. Current cultivation techniques such as ploughing and reduced till gradient are simulated along with fertiliser options to feed the top soil or the soil right below the seed.

Results

Our model was able to fit data from two barley field trials, achieving a good fit at early growth stages but a poor fit at late growth stages, where the model underestimated plant P uptake. A well-mixed soil (inverted and 25 cm ploughing) is important for optimal plant P uptake and provides the best environment for the root system.

Conclusions

The model is sensitive to the initial state of P and its distribution within the soil profile; experimental parameters which are sparsely measured. The combination of modelling and experimental data provides useful agricultural predictions for site specific locations.
  相似文献   
102.
Markel  D.  Sass  E.  Lazar  B.  Bein  A. 《Wetlands Ecology and Management》1998,6(2-3):103-120
Major biogeochemical processes in the newly created, shallow Lake Agmon (Hula Valley, northern Israel) were investigated from 1994 to 1996. Sediment cores, lake water and porewater were analyzed for chemical composition and spatial distribution. Sediment analyses revealed that Lake Agmon has two different sediment types: peat sediments in the northern and central parts, and marls in the southern part. The basic composition of the lake's water was controlled mainly by the mixing of two distinct water types (Jordan River and water drainage), and by evaporation. About 3/4 of the lake water originated from the Jordan Inlet, a quarter through the Z Canal Inlet (peat drainage) and a minor amount from groundwater seepage. Lake Agmon is unique among freshwater wetlands owing to its high SO 4 2– content, which is ca. 1/3 that of sea water. This characteristic is ascribed to the dissolution of secondary gypsum, formed in the peat soils since the drainage of the historic Hula Marsh. Leaching gypsum from the shallow sediments during the first few months after flooding was followed by a later stage of constant diffusion and advection of SO 4 2– from gypsum dissolution in deeper sediments. Gypsum dissolution in lake sediments contributed ca. half of the SO4 2– and Ca2+ inputs to the lake. The concomitant increase of Ca2+ combined with alkalinity release due to organic matter decomposition in the sediments led to the precipitation of CaCO3. This precipitation was enhanced by photosynthesis, particularly during summers, and consumed about a tenth of the Ca2+ and third of the alkalinity outputs from the lake. Iron-hydroxide was the main agent for microbial oxidation of organic matter, surpassing by far the role of sulfate, nitrate and manganese as electron acceptors. The produced Fe2+ was transported upward by diffusion and advection and oxidized to ferric iron at the sediment-water interface. There is evidence, however, that some sulfate was reduced, but most of the produced sulfide reacted with ferrous iron and accumulated in the sediments as FeS minerals. Therefore, despite high sulfate concentrations, the high iron availability restricted release of toxic sulfides into the water and thereby served to maintain reasonable water quality.  相似文献   
103.
To evaluate the receiver operating characteristics (ROC) to determine the cutoffs of waist circumference as a potential population directed screening tool for hypercholesterolaemia (≥6.5 mmol/L), low high density lipoprotein cholesterol (<0.9 mmol/L), and hypertension (treated and/or systolic ≥160 and/or diastolic blood pressure ≥95 mmHg), in 2183 men and 2698 women aged 20 to 59 years selected at random from Dutch civil registries. Main outcome measures: Height, weight, body mass index (BMI), waist circumference, total plasma cholesterol and high density lipoprotein cholesterol concentrations, and blood pressure. Results: ROC curves showed that sensitivity equalled specificity at waist circumferences between 93–95 cm in men and 81–84 cm in women for identifying individual risk factors, and 92 cm in men and 81 cm in women for identifying those with at least one risk factor. Sensitivity and specificity were equal at levels between 61% to 69% for identifying individual risk factors, with positive predictions (56.8% in men and 37.8% in women) within 2% of those using previously defined ‘Action Level 1’ of waist circumference 94 cm in men and 80 cm in women (58.8% in men and 37.4% in women). Risk prediction by anthropometric methods was relatively low: ROC areas for identifying each risk factor by waist varied from 55% to 60%, and reached about 65% for identifying at least one risk factor. Height accounted for less than 03% of variance in waist circumference. Using BMI at 25 kg/m2 gave similar prediction to waist, but its combination with waist did not improve predictive values. Conclusions: Measurement of waist circumference ‘Action Level 1’ at 94 cm (37 inches) in men and 80 cm (32 inches) in women could be adopted as a simpler valid alternative to BMI for health promotion, to alert those at risk of cardiovascular disease, and as a guide to risk avoidance by self-weight management  相似文献   
104.
It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a β-helix pentarepeat protein from the human pathogen Clostridium botulinum—a homolog of the fluoroquinolone resistance protein MfpA—using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight β-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~ 35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable β-helix since it is structurally homologous to the smallest known β-helix protein, a four-coil protein that is stable in solution.  相似文献   
105.
The inhibition of NK cell killing is mainly mediated via the interaction of NK inhibitory receptors with MHC class I proteins. In addition, we have previously demonstrated that NK cells are inhibited in a class I MHC-independent manner via homophilic carcinoembryonic Ag (CEA) cell adhesion molecules (CEACAM1)-CEACAM1 and heterophilic CEACAM1-CEA interactions. However, the cross-talk between immune effector cells and their target cells is not limited to cell interactions per se, but also involves a specific exchange of proteins. The reasons for these molecular exchanges and the functional outcome of this phenomenon are still mostly unknown. In this study, we show that NK cells rapidly and specifically acquire CEA molecules from target cells. We evaluated the role of cytotoxicity in the acquisition of CEA and demonstrated it to be mostly killing independent. We further demonstrate that CEA transfer requires a specific interaction with an unknown putative NK cell receptor and that carbohydrates are probably involved in CEA recognition and acquisition by NK cells. Functionally, the killing of bulk NK cultures was inhibited by CEA-expressing cells, suggesting that this putative receptor is an inhibitory receptor.  相似文献   
106.
Bacteria have developed mechanisms to sequester host iron via chelators such as deferoxamine (DFO). Interestingly, DFO has been shown to stimulate acute intestinal epithelial cell inflammatory cytokine production in the absence of bacteria; however, this mechanism has not been elucidated. Intestinal epithelial cell production of IL-6 and TNF-alpha is elevated in various gastrointestinal pathologies, including acute intestinal ischemia. Similarly, VEGF and HGF are essential to intestinal epithelial cell integrity. Therapeutic strategies that decrease IL-6 and TNF-alpha while increasing VEGF and HGF therefore have theoretical appeal. We hypothesized that 1) fetal human intestinal epithelial cells acutely produce increased IL-6, TNF-alpha, VEGF, and HGF during iron chelation and 2) the MAPK pathway mediates these effects. Fetal human intestinal epithelial cells were stimulated by iron chelation (1 mM DFO) with and without p38 MAPK, ERK, or JNK inhibition. Supernatants were harvested after 24 h of incubation, and IL-6, TNF-alpha, VEGF, and HGF levels were quantified by ELISA. Activation of MAPK pathways was confirmed by Western blot analysis. DFO stimulation resulted in a significant increase in epithelial cell IL-6 and VEGF production while yielding a decrease in HGF production (P<0.05). Unexpectedly, TNF-alpha was not detectable. p38 MAPK, ERK, and JNK inhibition significantly decreased IL-6, VEGF, and HGF production (P<0.05). In conclusion, DFO acutely increases fetal human intestinal epithelial cell IL-6 and VEGF expression while causing an unexpected decrease in HGF expression and no detectable TNF-alpha production. Furthermore, chelator-induced intestinal epithelial cell cytokine expression depends on p38, ERK, and JNK MAPK pathways.  相似文献   
107.
Necrotizing enterocolitis (NEC) is an emergency of the newborn that often requires surgery. Growth factors from stem cells may aid in decreasing intestinal damage while also promoting restitution. We hypothesized that 1) TNF, LPS, or hypoxia would alter bone marrow mesenchymal stem cell (BMSC) TNF, IGF-1, IL-6, and VEGF production, and 2) TNF receptor type 1 (TNFR1) or type 2 (TNFR2) ablation would result in changes to the patterns of cytokines and growth factors produced. BMSCs were harvested from female wild-type (WT), TNFR1 knockout (KO), and TNFR2KO mice. Cells were stimulated with TNF, LPS, or hypoxia. After 24 h, cell supernatants were assayed via ELISA. Production of TNF and IGF-1 was decreased in both knockouts compared with WT regardless of the stimulus utilized, whereas IL-6 and VEGF levels appeared to be cooperatively regulated by both the activated TNF receptor and the initial stimulus. IL-6 was increased compared with WT in both knockouts following TNF stimulation but was significantly decreased with LPS. Compared with WT, hypoxia increased IL-6 in TNFR1KO but not TNFR2KO cells. TNF stimulation decreased VEGF in TNFR2KO cells, whereas TNFR1 ablation resulted in no change in VEGF compared with WT. TNFR1 ablation resulted in a decrease in VEGF following LPS stimulation compared with WT; no change was noted in TNFR2KO cells. With hypoxia, TNFR1KO cells expressed more VEGF compared with WT, whereas no difference was noted between WT and TNFR2KO cells. TNF receptor ablation modifies BMSC cytokine production. Identifying the proper stimulus and signaling cascades for the production of desired growth factors may be beneficial in maximizing the therapeutic potential of stem cells.  相似文献   
108.
Recent studies have shown that females have improved myocardial functional recovery, TNF receptor 1 (TNFR1) signaling resistance, and increased STAT3 phosphorylation following acute ischemia/reperfusion (I/R) compared with males. We hypothesized that 1) STAT3 deficiency in endothelial cells (EC) impairs myocardial functional recovery in both sexes, 2) EC STAT3 deficiency equalizes sex differences in functional recovery, and 3) knockout of EC STAT3 decreases activation of myocardial STAT3 and increases p38 MAPK activation following acute I/R. Isolated male and female mouse hearts from WT and EC STAT3 knockout (STAT3KO) were subjected to 20-min ischemia/60-min reperfusion, and +/- dP/dt were continuously recorded. Heart tissue was analyzed for the active forms of STAT3 and p38 MAPK as well as expression of caspase-8 (Western blot) following I/R. EC STATKO had significantly decreased myocardial functional recovery in both sexes (%recovered +dP/dt: male 51.6 +/- 3.1 vs. 32.1 +/- 13.1%, female 79.1 +/- 3.6 vs. 43.6 +/- 9.1%; -dP/dt: male 52.2 +/- 3.3 vs. 28.9 +/- 12%, female 75.2 +/- 4.1 vs. 38.6 +/- 10%). In addition, EC STAT3KO neutralized sex differences in myocardial function, which existed in WT mice. Interestingly, EC STAT3 deficiency decreased myocardial STAT3 activation but increased myocardial p38 MAPK activation in both sexes; however, this was seen to a greater degree in females. We conclude that EC STAT3 deficiency resulted in decreased recovery of myocardial function in both sexes and neutralized sex differences in myocardial functional recovery following I/R. This observation was associated with decreased activation of myocardial STAT3 and increased activation of p38 MAPK in EC STAT3KO heart after I/R.  相似文献   
109.
110.
The effect of six phosphorus levels (0, 40, 80, 120, 160 and 200 kg/ha) on the duration of cumulative leaf area, biomass and agronomic yield was determined in the maize cultivars: Amarillo Almoloya, Cacahuacintle and Condor in 2010 and 2011. Such cultivars were sown in the Cerrillo Piedras Blancas Mexico. A completely randomized complete block design with factorial arrangement was utilized. High phosphorus levels (120, 160 and 200 kg/ha) positively affected the duration of cumulative leaf area; greatest values were obtained in Cacahuacintle. A greater duration of accumulated leaf area contributes to determine high values of biomass accumulation and grain yield in this cultivar. Leaf area duration appeared to be a useful tool for evaluating different genotypes in a given environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号