首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   61篇
  2023年   7篇
  2022年   6篇
  2021年   28篇
  2020年   12篇
  2019年   26篇
  2018年   23篇
  2017年   24篇
  2016年   32篇
  2015年   60篇
  2014年   68篇
  2013年   57篇
  2012年   93篇
  2011年   68篇
  2010年   58篇
  2009年   21篇
  2008年   47篇
  2007年   39篇
  2006年   42篇
  2005年   30篇
  2004年   25篇
  2003年   27篇
  2002年   19篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   2篇
  1994年   4篇
  1993年   6篇
  1992年   4篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   3篇
  1982年   2篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   3篇
  1969年   1篇
  1968年   1篇
  1964年   1篇
  1963年   1篇
  1953年   1篇
排序方式: 共有910条查询结果,搜索用时 62 毫秒
61.
We have performed scanning x-ray nanobeam diffraction experiments on single cells of the amoeba Dictyostelium discoideum. Cells have been investigated in 1), freeze-dried, 2), frozen-hydrated (vitrified), and 3), initially alive states. The spatially resolved small-angle x-ray scattering signal shows characteristic streaklike patterns in reciprocal space, which we attribute to fiber bundles of the actomyosin network. From the intensity distributions, an anisotropy parameter can be derived that indicates pronounced local variations within the cell. In addition to nanobeam small-angle x-ray scattering, we have evaluated the x-ray differential phase contrast in view of the projected electron density. Different experimental aspects of the x-ray experiment, sample preparation, and data analysis are discussed. Finally, the x-ray results are correlated with optical microscopy (differential phase contrast and confocal microscopy of mutant strains with fluorescently labeled actin and myosin II), which have been carried out in live and fixed states, including optical microscopy under cryogenic conditions.  相似文献   
62.
63.
This study tests the hypothesis that herd accumulation can be a risk reducing strategy aimed at increasing security in an unpredictable environment. Saami reindeer husbandry in Norway is characterized by environmental unpredictability and occasionally harsh winters can have dramatic negative effects on reindeer population densities. While herd accumulation has been found to be an adaptive risk reducing strategy in stochastic environments (i.e., individually rational), the accumulation of large herds may also result in collectively negative density dependent effects, which may negatively affect individual herders (i.e., collectively irrational). We found that individual husbandry units’ strategies, such as accumulating reindeer, have a larger effect on individual husbandry units’ herd size than a negative density-dependent effect.  相似文献   
64.
While there is a general assumption that labour has a positive effect on pastoral production, studies that have quantified this relationship have been characterized by ambiguous results. This is most likely related to the fact that possible cooperative pastoral production has been little explored in the literature, although it is well documented that nomadic pastoralist households share and exchange labour in so-called cooperative herding groups. Consequently, this study aims at investigating possible cooperative labour-related effects on production among Saami reindeer herders in Norway by using kinship relations as a proxy for cooperation. This study found that cooperative labour investment is important for Saami reindeer herders, but that the effect of kinship and labour needs to be understood in relation to each other. When assessing the effect of labour and kinship simultaneously, both labour and genealogical relationship had positive effects on herd size. We also found a positive interaction between kinship and labour suggesting that high levels of relatedness coupled with a large potential labour pool had an increasingly positive effect on herd size.  相似文献   
65.
Contaminated surfaces are possible vehicles in infection transmission. It is known that both Copper (Cu) and Silver (Ag) efficiently inactivate microbes by direct contact. Aiming at using these metals for benefitting from their antimicrobial effect, but to avoid subsequent toxic effects, we evaluated the antimicrobial activity of nanometric thin Silver and Copper films covering less expensive materials. Using a modified version of the Japan Industrial Standard JIS Z 2801:2000, we demonstrated the antimicrobial activity of the surfaces covered with metal ions nanofilms on microorganisms possibly involved in nosocomial infections and on Bacillus anthracis, bacteria with possible implication in bioterrorist attacks. Copper covered surfaces proved to have better antimicrobial activity than Silver surfaces. Silver covered surfaces showed better activity on Gram negative bacteria than on Gram positive cocci. Going deeper with studies on antimicrobial effects using new methods with better direct and/or functional discriminatory capacity is needed in order to provide additional information on the mechanisms of Silver and Copper nanofilms antimicrobial activity.  相似文献   
66.
67.
Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May-June-July 2009 in China (Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.  相似文献   
68.
Intramammary infusion of lipopolysaccharide (LPS) in cows induces udder inflammation that partly simulates mastitis caused by infection with Gram‐negative bacteria. We have used this animal model to characterize the quantitiative response in the milk proteome during the time course before and immediately after the LPS challenge. Milk samples from three healthy cows collected 3 h before the LPS challenge were compared with milk samples collected 4 and 7 h after the LPS challenge, making it possible to describe the inflammatory response of individual cows. Quantitative protein profiles were obtained for 80 milk proteins, of which 49 profiles changed significantly for the three cows during LPS challenge. New information obtained in this study includes the quantified increase of apolipoproteins and other anti‐inflammatory proteins in milk, which are important for the cow's ability to balance the immune response, and the upregulation of both complement C3 and C4 indicates that more than one complement pathway could be activated during LPS‐induced mastitis. In the future, this analytical approach may provide valuable information about the differences in the ability of individual cows to resist and recover from mastitis.  相似文献   
69.
We have analyzed the impact of surface-to-volume ratio on final bacterial concentrations after batch growth. We examined six bottle sizes (20 to 1,000 ml) using three independent enumeration methods to quantify growth. We found no evidence of a so-called volumetric bottle effect, thus contradicting numerous previous reports.Microbial batch growth during confined incubation in bottles of various sizes is used daily in a broad variety of microbiological studies and methods, including bioassays such as the assimilable organic carbon (AOC) assay (6, 10, 18) and the analysis of pure culture or microbial community growth in freshwater (3, 11, 19, 20). In this context, “bottle effect” or “volume effect” is a term that has cropped up frequently in aquatic microbiology papers (e.g., references 12, 13, and 21) during the last 100 years to explain inexplicable phenomena and variations in results obtained from such batch growth studies. The uncertainty surrounding this apparent effect was clearly summarized in a recent paper by Pernthaler and Amann (16): “Such investigations are often plagued by the mysterious ‘bottle effect’, a hard-to-define concept that reflects the worry of whether phenomena observed in confined assemblages are nonspecific consequences of the confinement rather than a result of the planned manipulation.” The “bottle effect” alludes to an apparent reaction of bacteria to batchwise incubation in a confined environment, and this concept has intermittently been linked to influences on final cell concentrations (3) and grazing/bacterivory (13), a change in viability/activity parameters (9), a change in cultivability (5), and a change in population composition (1).The fact that microbiological processes during confined incubation differ from those in the environment is indisputable. However, a particular section of “bottle effect” literature focuses specifically on a volumetric “bottle effect”, where the above-mentioned effects are linked specifically to the size (or surface-to-volume ratio) of the incubation vessel (3, 8, 11-13, 15, 21). One of the oldest and best-known studies summarized clearly: “It will be observed that the densest bacterial populations appear in the bottles of water which offer the largest area of glass surface per unit volume of water” (21). This idea has established itself as dogma during the last century, with only a few differing opinions (4). However, precious little empirical data that actually quantify and explain the volumetric “bottle effect” are ever presented. In one example, Bischofberger et al. (3) observed that incubation of groundwater led to significantly more growth (about 2 log units) in small bottles (100 ml) than in big ones (10 liters). More often, however, the “bottle effect” is merely mentioned, as if it is self-explanatory and indisputable (2, 11, 12). In the present study, we took a simple but detailed look at the effect of bottle size on the outcome of short-term (<5-day) batch growth assays and compared the data critically to information in the literature and current opinion on this topic.Three batch growth experiments were conducted to assess the volumetric bottle effect on final cell concentrations after growth into stationary phase. Six different bottle sizes were used, covering the ranges most often reported in “bottle effect” literature. All glassware and Teflon-coated caps were cleaned comprehensively as described elsewhere (6) to remove any traces of organic carbon that might have been present on surfaces. The bottle sizes were as follows (water volumes and surface area-to-volume ratios [square centimeters to milliliters] are respectively included in parentheses): 1,000 ml (900 ml, 0.3:1), 500 ml (400 ml, 0.4:1), 250 ml (200 ml, 0.6:1), 100 ml (90 ml, 0.8:1), 40 ml (35 ml, 1.5:1), and 20 ml (15 ml, 2.4:1). In the first experiment, a sample of natural river water (dissolved organic carbon [DOC], 3.8 mg/liter; AOC, 0.3 mg/liter) from a small oligotrophic stream was obtained, filter sterilized with a 50-kDa dialysis filter (Fresenius Medical Care), and inoculated (at 103 cells/ml) with a microbial community used for AOC assays (19). In the second experiment, a sample of the effluent (DOC, 1.2 mg/liter; AOC, 0.03 mg/liter; total cell concentration [TCC], 3 × 105 cells/ml) from a granulated active carbon filter situated in a drinking water pilot plant (7) was collected and used directly for the experiment without additional treatment or inoculation. For the third experiment, sterile Luria-Bertani (LB) medium (diluted 1:10,000; DOC, 0.7 mg/liter; AOC, 0.46 mg/liter) was inoculated with Vibrio cholerae O1 (103 cells/ml) as described previously (19). The water from each experiment was distributed into triplicate flasks of each size and incubated (at 30°C) until stationary phase was reached. Stationary phase was indicated by no significant increase in the TCC (measured after 3, 4, and 5 days) on consecutive days. Samples from all experiments were analyzed (i) for TCCs after being stained with SYBR green I and subjected to flow cytometry (7, 19), (ii) for ATP by using a commercial luciferin-luciferase assay (Promega Corporation) (7), and (iii) for heterotrophic plate counts (HPC) on R2A agar by a pour plate method with incubation at 30°C for 10 days. Possible biofilm growth was checked by applying sonication to selected samples. However, no wall growth in bottles of any size was observed.Growth was observed in all three experiments. The results show the net growth after subtraction of the initial cell/ATP/HPC concentrations from the final concentrations (Fig. (Fig.1).1). The proposed concept of the volumetric bottle effect implies that more growth should occur in smaller bottles. All data sets were subjected to regression analysis, and we observed no significant correlation (P < 0.01) between bottle size and final growth in any of the experiments by any of the three independent methods used for quantification. Figure Figure1A1A shows the batch growth results for a natural microbial community in prefiltered river water. This experimental setup is reflective of a typical AOC assay (6) or batch cultivation of natural microbial communities (20). Figure Figure1B1B shows the results for direct incubation of a treated drinking water sample. This sample and experimental setup were chosen specifically to assess any potential volumetric “bottle effect” on an indigenous microbial community in a biologically stable water sample, where only limited growth is expected. Indeed, the final cell concentration in the sample was only about 25% higher than the original cell concentration. The cultivability (HPC/TCC × 100) at day 0 was 0.4%, and at the end of the experimental period it had increased to 2.5%. This points to increased cultivability as a result of growth during confinement (5), yet it does not relate at all to the size of the incubation vessel. Figure Figure1C1C shows the data for V. cholerae grown in sterile LB medium (diluted 1:10,000) to stationary phase. Again, this particular setup is of specific relevance since a recently published paper on the growth of V. cholerae referred directly to the volumetric “bottle effect” to explain rather large differences between growth results from two separate studies (11, 19). The data from Fig. Fig.1C1C suggest at least that a “bottle effect” should be ruled out as an interfering factor in this case.Open in a separate windowFIG. 1.Effects of bottle size on bacterial batch growth of a natural microbial community in filter-sterilized surface water (A), growth of bacteria during direct incubation of water from a drinking water treatment plant (B), and batch growth of a V. cholerae pure culture in diluted LB medium (C). Growth (expressed as the net growth) was quantified by flow cytometric total cell counting (circles), total ATP analysis (diamonds), and conventional plating (squares). All data points represent averages of triplicate measurements.The results presented in this study clearly dispute the concept of a volumetric “bottle effect” on the outcome of short-term batch growth assays, be it for pure cultures or natural microbial communities. These findings contradict evidence reported by many other researchers (3, 8, 11-13, 15, 21). Although the volumetric “bottle effect” is often cited as a somewhat mysterious occurrence, it is imperative that clear experimental data are required for the critical appraisal thereof. The main experimental theory behind the phenomenon is that organic carbon adsorbs to clean glass surfaces, thus locally concentrating the carbon and creating more favorable growth conditions (2, 14). This adsorption and the fact that bacteria can utilize such adsorbed carbon have been demonstrated experimentally (14). What has, in our opinion, not been shown conclusively is that these effects can be so dramatic that they would alter the growth of samples to the extent that different sizes of bottles would render different final cell numbers after growth. Since we have not observed any volumetric “bottle effect” in our work, we can only speculate on the possible reasons why this has been observed previously. One explanation may be that glassware contaminated with organic carbon can contribute to the perception of a volumetric “bottle effect,” as large surface-to-volume ratios (found in small bottles) would account for increased contamination compared to that in bottles with smaller ratios. Hence, more additional available carbon would be introduced into smaller bottles, giving rise to higher final cell numbers after growth. In this context, it is essential that a comprehensive glassware-cleaning protocol be followed, including heating to a high temperature (>500°C) and storage away from volatile organics (6). In addition, it is important that such experiments at low carbon concentrations are complemented with the inclusion of correct and sensitive controls to assess potential organic carbon contamination. For example, the use of deionized water as a negative control should be avoided, since the absence of inorganic nutrients is bound to lead to no growth and thus false-negative results (10). A good negative control would be water that is only carbon limited, e.g., bottled drinking water (17). Moreover, the use of multiple tools for analyzing growth, including cultivation-independent methods, is encouraged.In conclusion, we did not observe evidence of a volumetric bottle effect on short-term (<5-day) batch incubations. The findings of this study suggest that reference to the so-called volumetric bottle effect should be considered carefully unless supported by clear experimental data. This study does not dispute the fact that many authors have observed results implying apparent bottle effects during growth studies, but it questions the interpretation and understanding of this concept and the random use of the term “bottle effect” to explain uncertainty in results, specifically in relation to bottle size. Hopefully, these data will assist with experimental setups and comparison of data among different groups and stimulate discussion of and future research on this interesting, but slightly controversial, topic.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号