首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   21篇
  451篇
  2023年   1篇
  2022年   8篇
  2021年   15篇
  2020年   4篇
  2019年   5篇
  2018年   11篇
  2017年   6篇
  2016年   11篇
  2015年   20篇
  2014年   20篇
  2013年   41篇
  2012年   37篇
  2011年   26篇
  2010年   28篇
  2009年   20篇
  2008年   29篇
  2007年   30篇
  2006年   21篇
  2005年   22篇
  2004年   18篇
  2003年   14篇
  2002年   12篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1961年   1篇
排序方式: 共有451条查询结果,搜索用时 15 毫秒
91.
This paper describes a combined investigation of the salivary and MUC5B films structure and topography in conditions similar to those found in the oral cavity in terms of ionic strength, pH, and protein concentration. AFM and ellipsometry were successfully used to give a detailed picture of the film structure and topography both on hydrophilic and on hydrophobic substrata. Regardless of the substrata, the salivary film can be described as having a two sublayer structure in which an inner dense layer is decorated by large aggregates. However, the shape and height of these larger aggregates largely depend on the type of substrata used. Additionally, we show that the adsorption of MUC5B is controlled by the type of substrata and the MUC5B film topography is similar to that of the larger aggregates present in the salivary films, especially on hydrophobic substrates. Therefore, we conclude that MUC5B is a major component in the salivary film when formed on hydrophobic substrates. Furthermore, we studied how resistant the salivary and MUC5B films are against elutability by buffer rinsing and addition of SDS solution. We conclude that the adsorbed proteins contain fractions with varying binding strengths to the two types of surfaces. Specifically, we have shown that the large MUC5B biomacromolecules on the hydrophobic substrates are especially resistant to both elution with buffer solution and SDS. Therefore, these large mucins can be responsible for the increased resistance of HWS films on hydrophobic substrates and can protect the intraoral surfaces against surface-active components present in oral health care products.  相似文献   
92.
We previously established that at 3 years postseroconversion, ~30% of HIV-infected individuals have cross-reactive neutralizing activity (CrNA) in their sera. Here we studied the kinetics with which CrNA develops and how these relate to the development of autologous neutralizing activity as well as viral escape and diversification. For this purpose, sera from five individuals with CrNA and one elite neutralizer that were obtained at three monthly intervals in the first year after seroconversion and at multiple intervals over the disease course were tested for neutralizing activity against an established multiclade panel of six viruses. The same serum samples, as well as sera from three individuals who lacked CrNA, were tested for their neutralizing activities against autologous clonal HIV-1 variants from multiple time points covering the disease course from seroconversion onward. The elite neutralizer already had CrNA at 9.8 months postseroconversion, in contrast with the findings for the other five patients, in whom CrNA was first detected at 20 to 35 months postseroconversion and peaked around 35 months postseroconversion. In all patients, CrNA coincided with neutralizing activity against autologous viruses that were isolated <12 months postseroconversion, while viruses from later time points had already escaped autologous neutralizing activity. Also, the peak in gp160 sequence diversity coincided with the peak of CrNA titers. Individuals who lacked CrNA had lower peak autologous neutralizing titers, viral escape, and sequence diversity than individuals with CrNA. A better understanding of the underlying factors that determine the presence of CrNA or even an elite neutralizer phenotype may aid in the design of an HIV-1 vaccine.  相似文献   
93.
The development of vessel-like structures in vitro to mimic as well as to realize the possibility of tissue-engineered small vascular networks presents a major challenge to cell biologists and biotechnologists. We aimed to establish a three-dimensional (3-D) culture system with an endothelial network that does not require artificial substrates or ECM compounds. By using human skin fibroblasts and endothelial cells (ECs) from the human umbilical vein (HUVECs) in diverse spheroid coculture strategies, we verified that fibroblast support and modulate EC migration, viability, and network formation in a 3-D tissue-like stromal environment. In mixed spheroid cultures consisting of human ECs and fibroblasts, a complex 3-D network with EC tubular structures, lumen formation, pinocytotic activity, and tight junction complexes has been identified on the basis of immunohistochemical and transmission electron microscopic imaging. Tubular networks with extensions up to 400 µm were achieved. When EC suspensions were used, EC migration and network formation were critically affected by the status of the fibroblast. However, the absence of EC migration into the center of 14-day, but not 3-day, precultured fibroblast spheroids could not be attributed to loss of F viability. In parallel, it was also confirmed that migrated ECs that entered cluster-like formations became apoptotic, whereas the majority of those forming vessel-like structures remained viable for >8 days. Our protocols allow us to study the nature of tubule formation in a manner more closely related to the in vivo situation as well as to understand the basis for the integration of capillary networks in tissue grafts and develop methods of quantifying the amount of angiogenesis in spheroids using fibroblast and other cells isolated from the same patient, along with ECs. endothelium; angiogenesis; human umbilical vein endothelial cell; multicellular spheroid; coculture; tubular structures  相似文献   
94.
Boocock GR  Marit MR  Rommens JM 《Genomics》2006,87(6):758-771
The Shwachman-Bodian-Diamond syndrome (SBDS) protein family occurs widely in nature, although its function has not been determined. Comprehensive database searches revealed SBDS homologues from 159 species, including examples from all sequenced archaeal and eukaryotic genomes and all eukaryotic kingdoms. Sequence alignment with ClustalX and MUSCLE algorithms led to the identification of conserved residues that occurred predominantly in the amino-terminal FYSH domain where they appeared to contribute to protein folding or stability. Only SBDS residue Gly91 was invariant in all species. Four distantly related protists were found to have two divergent SBDS genes in their genomes. In each case, phylogenetic analyses and the identification of shared sequence features suggested that one gene was derived from lateral gene transfer. We also identified a shared C-terminal zinc finger domain fusion in flowering plants and chromalveolates that may shed light on the function of the protein family and the evolutionary histories of these kingdoms. To assess the extent of SBDS functional conservation, we carried out complementation studies of SBDS homologues and interspecies chimeras in Saccharomyces cerevisiae. We determined that the FYSH domain was widely interchangeable among eukaryotes, while domain 2 imparted species specificity to protein function. Domain 3 was largely dispensable for function in our yeast complementation assay. Overall, the phylogeny of SBDS was shared with a group of proteins that were markedly enriched for RNA metabolism and/or ribosome-associated functions. These findings link Shwachman-Diamond syndrome to other bone marrow failure syndromes with defects in nucleolus-associated processes, including Diamond-Blackfan anemia, cartilage-hair hypoplasia, and dyskeratosis congenita.  相似文献   
95.
Mucins form a group of heavily O‐glycosylated biologically important glycoproteins that are involved in a variety of biological functions, including modulating immune response, inflammation, and adhesion. Mucins are also involved in cancer and metastasis and often express diagnostic cancer antigens. Recently, a modified porcine submaxillary mucin (Tn‐PSM) containing GalNAcα1‐O‐Ser/Thr residues was shown to bind to soybean agglutinin (SBA) with ~106‐fold enhanced affinity relative to GalNAcα1‐O‐Ser, the pancarcinoma carbohydrate antigen. In this study, dynamic force spectroscopy is used to investigate molecular pairs of SBA and Tn‐PSM. A number of force jumps that demonstrate unbinding or rebinding events were observed up to a distance equal to 2.0 μm, consistent with the length of the mucin chain. The unbinding force increased from 103 to 402 pN with increasing force loading rate. The position of the activation barrier in the energy landscape of the interaction was 0.1 nm. The lifetime of the SBA–TnPSM complex in the absence of applied force was determined to be in the range 1.3–1.9 s. Kinetic parameters describing the rate of dissociation of other sugar lectin interactions are in the range 3.3 × 10?3–2.5 × 10?3 s. The long lifetime of the SBA‐TnPSM complex is compatible with a binding model in which lectin molecules “bind and jump” from α‐GalNAc residue to α‐GalNAc residue along the polypeptide chain of Tn‐PSM before dissociating. These findings have important implications for the molecular recognition properties of mucins. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 719–728, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
96.
97.
We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh, and crtX) of the γ-cyclic C50 carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the precursor molecule farnesyl pyrophosphate (FPP) proceeds via C40 lycopene, C45 nonaflavuxanthin, C50 flavuxanthin, and C50 sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene product. This is the first report describing the biosynthetic pathway of a γ-cyclic C50 carotenoid. Expression of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the structurally related ɛ-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the γ-cyclic C50 carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous ɛ-cyclic C50 carotenoid cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Surprisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only decaprenoxanthin, but also sarcinaxanthin and the asymmetric ɛ- and γ-cyclic C50 carotenoid sarprenoxanthin, described for the first time in this work. Together, these data contributed to new insight into the diverse and multiple functions of bacterial C50 carotenoid cyclases as key catalysts for the synthesis of structurally different carotenoids.Carotenoids are natural pigments synthesized by bacteria, fungi, algae, and plants, and more than 750 different carotenoids have been isolated from natural sources (17). They possess important biological functions as protectants against light and oxygen excess in photosynthetic processes (32, 38), and they have been proposed to reduce the risk of certain cancers, cardiovascular disease, and Alzheimer disease due to their antioxidative properties (20, 46). The global market for carotenoids used as food colorants and nutritional supplements was estimated at approximately $935 million in 2005 (11). More than 95% of all natural carotenoids are based on a symmetric C40 phytoene backbone, and only a small number of C30 and even fewer C50 carotenoids have been discovered (42).C50 carotenoids have multiple conjugated double bonds, and they contain at least one hydroxyl group; both these features contribute to strong antioxidative properties (17, 30, 32, 38). In nature, C50 carotenoids are synthesized by bacteria of the order Actinomycetales, and to date, only two different C50 carotenoid biosynthetic pathways have been described in the literature. The biosynthetic pathways of the ɛ-cyclic C50 carotenoid decaprenoxanthin [2,2′-bis-(4-hydroxy-3-methybut-2-enyl)-ɛ,ɛ-carotene] and the β-cyclic C50 carotenoid C.p.450 [2,2′-bis-(4-hydroxy-3-methybut-2-enyl)-β,β-carotene] have been elucidated in Corynebacterium glutamicum (22, 23) and in Dietzia sp. CQ4 (41), respectively. For both pathways, the common precursor, C40 lycopene, is synthesized from C15 farnesyl pyrophosphate (FPP) via the methylerythritol 4-phosphate (MEP) pathway, which is present in most eubacteria (33). Effective lycopene production has been achieved in genetically engineered noncarotenogenic hosts, such as Escherichia coli and Saccharomyces cerevisiae (9). Accordingly, the potential of using such biotechnologically relevant hosts for heterologous production of any lycopene-derived carotenoids has generated high interest.The biosynthesis of cyclic C50 carotenoids from lycopene is catalyzed by lycopene elongase and carotenoid cyclases. Even though most carotenoids in plants and microorganisms exhibit cyclic structures, cyclization reactions were predominantly known for C40 pathways (45) catalyzed by monomeric enzymes that have been isolated from plants and bacteria (5, 16, 27, 29, 31, 36). In C. glutamicum, the genes crtYe, crtYf, and crtEb were identified as being involved in the conversion of lycopene to the ɛ-cyclic C50 carotenoid decaprenoxanthin (22, 44). Sequential elongation of lycopene into the acyclic C50 carotenoid flavuxanthin was catalyzed by the crtEb gene product lycopene elongase. Subsequent cyclization to decaprenoxanthin was catalyzed by a heterodimeric C50 carotenoid, ɛ-cyclase, encoded by crtYe and crtYf (22). C. glutamicum can synthesize both mono- and diglucosylated decaprenoxanthin; however, the genetic and enzymatic bases for glucosylation of decaprenoxanthin are unknown. Analogous to decaprenoxanthin, biosynthesis of the β-cyclic C50 carotenoid C.p.450 in Dietzia sp. CQ4 from lycopene involves lycopene elongase and C50 carotenoid β-cyclase activities (41).While most cyclic carotenoids exhibit β-rings, ɛ-ring-containing pigments are common in higher plants (7), and carotenoids substituted only with γ-rings are rarely observed in plants and algae (14). To date, no biosynthetic pathway for γ-cyclic C50 carotenoids has been reported in the literature.Micrococcus luteus NCTC2665 (the “Fleming strain”) is a Gram-positive bacterium belonging to the family Micrococcaceae within the order Actinomycetales. The carotenoids, including the γ-cyclic C50 sarcinaxanthin [(2R,6R,2′R,6′R)-(2,2′-bis(4-hydroxy-3-methyl-2-butenyl)-γ,γ-carotene)], synthesized by this bacterium have been identified and structurally elucidated (26). We recently isolated and characterized several wild-type M. luteus strains from the sea surface microlayer of the middle part of the Norwegian coast (39). Here, we report one additional such marine M. luteus isolate, designated Otnes7, forming color-intensive colonies indicating high sarcinaxanthin production levels. Both Otnes7 and NCTC2665 were used as M. luteus model strains, and the sarcinaxanthin biosynthetic gene clusters were cloned from both strains. The complete sarcinaxanthin biosynthetic pathway from lycopene was elucidated, including glucosylation, and we also explored the potential of using Otnes7-derived genes to achieve effective heterologous production of sarcinaxanthin in E. coli. The results add important new knowledge of the biosynthesis of C50 carotenoids, and in particular, they highlight the diverse functions of C50 carotenoid cyclases leading to synthesis of structurally different carotenoids.  相似文献   
98.
99.
Human immunodeficiency virus type 1 (HIV-1) has the ability to adapt to the host environment by escaping from host immune responses. We previously observed that escape from humoral immunity, both at the individual and at a population level, coincided with longer variable loops and an increased number of potential N-linked glycosylation sites (PNGS) in the viral envelope glycoprotein (Env) and, in particular, in variable regions 1 and 2 (V1V2). Here, we provide several lines of evidence for the role of V1V2 in the resistance of HIV-1 to neutralizing antibodies. First, we determined that the increasing neutralization resistance of a reference panel of tier-categorized neutralization-sensitive and -resistant HIV-1 variants coincided with a longer V1V2 loop containing more PNGS. Second, an exchange of the different variable regions of Env from a neutralization-sensitive HIV-1 variant into a neutralization-resistant escape variant from the same individual revealed that the V1V2 loop is a strong determinant for sensitivity to autologous-serum neutralization. Third, exchange of the V1V2 loop of neutralization-sensitive HIV-1 variants from historical seroconverters with the V1V2 loop of neutralization-resistant HIV-1 variants from contemporary seroconverters decreased the neutralization sensitivity to CD4-binding site-directed antibodies. Overall, we demonstrate that an increase in the length of the V1V2 loop and/or the number of PNGS in that same region of the HIV-1 envelope glycoprotein is directly involved in the protection of HIV-1 against HIV-specific neutralizing antibodies, possibly by shielding underlying epitopes in the envelope glycoprotein from antibody recognition.  相似文献   
100.
The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern‐ and southern‐adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern‐adapted populations had a better freezing tolerance than the southern‐adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号