首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   69篇
  国内免费   1篇
  2023年   8篇
  2022年   9篇
  2021年   33篇
  2020年   17篇
  2019年   17篇
  2018年   21篇
  2017年   9篇
  2016年   22篇
  2015年   32篇
  2014年   40篇
  2013年   42篇
  2012年   50篇
  2011年   45篇
  2010年   30篇
  2009年   22篇
  2008年   31篇
  2007年   35篇
  2006年   23篇
  2005年   26篇
  2004年   16篇
  2003年   16篇
  2002年   16篇
  2001年   11篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   9篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1980年   3篇
  1979年   3篇
  1977年   4篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1958年   2篇
  1949年   2篇
  1947年   2篇
  1942年   2篇
  1935年   2篇
  1934年   2篇
  1931年   2篇
排序方式: 共有709条查询结果,搜索用时 15 毫秒
101.
Göttingen minipigs were treated topically for 6 d with a novel retinoid (MDI 301) at concentrations ranging from 0.3% to 30% in cream vehicle. Treatment of the minipigs did not adversely affect their health (hematological and necropsy parameters) or produce changes in the skin suggestive of retinoid-induced skin irritation. After killing the animals, skin samples from each treatment site were excised and maintained in organ culture for 6 d. In addition, untreated skin was also maintained in organ culture and treated with MDI 301 (0.1–5 μg/ml). After 3 d, the culture supernatants were collected and analyzed for levels of collagen type I and for matrix metalloproteinases (MMPs). Both skin samples treated in vivo and skin samples exposed to MDI 301 in culture demonstrated increased collagen production. Only slight changes in levels of MMP-2 (gelatinase A) or MMP-9 (gelatinase B) were seen. After 6 d, the organ-cultured skin was fixed in formalin and prepared for histology. The organ-cultured skin was compared to skin that was fixed at killing after in vivo treatment. Epidermal hyperplasia was quantified at various MDI 301 concentrations. In vivo and in vitro treatments showed similar results—although the thickness was not substantially changed on average, there were focal areas of hyperplasia at higher retinoid concentrations. Taken together, these data suggest that MDI 301 enhances collagen production in minipig skin, without irritation. Furthermore, these studies suggest that minipig skin exposed to the retinoid in organ culture is equally predictive as topically treated skin. The in vitro organ culture approach may provide a cost-effective alternative model to that of the intact animal for skin retinoid testing.  相似文献   
102.
Pharmacologic approaches to studying palmitoylation are limited by the lack of specific inhibitors. Recently, screens have revealed five chemical classes of small molecules that inhibit cellular processes associated with palmitoylation (Ducker, C. E., L. K. Griffel, R. A. Smith, S. N. Keller, Y. Zhuang, Z. Xia, J. D. Diller, and C. D. Smith. 2006. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol. Cancer Ther. 5: 1647-1659). Compounds that selectively inhibited palmitoylation of N-myristoylated vs. farnesylated peptides were identified in assays of palmitoyltransferase activity using cell membranes. Palmitoylation is catalyzed by a family of enzymes that share a conserved DHHC (Asp-His-His-Cys) cysteine-rich domain. In this study, we evaluated the ability of these inhibitors to reduce DHHC-mediated palmitoylation using purified enzymes and protein substrates. Human DHHC2 and yeast Pfa3 were assayed with their respective N-myristoylated substrates, Lck and Vac8. Human DHHC9/GCP16 and yeast Erf2/Erf4 were tested using farnesylated Ras proteins. Surprisingly, all four enzymes showed a similar profile of inhibition. Only one of the novel compounds, 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one [Compound V (CV)], and 2-bromopalmitate (2BP) inhibited the palmitoyltransferase activity of all DHHC proteins tested. Hence, the reported potency and selectivity of these compounds were not recapitulated with purified enzymes and their cognate lipidated substrates. Further characterization revealed both compounds blocked DHHC enzyme autoacylation and displayed slow, time-dependent inhibition but differed with respect to reversibility. Inhibition of palmitoyltransferase activity by CV was reversible, whereas 2BP inhibition was irreversible.  相似文献   
103.
Palmitoylation of the yeast vacuolar protein Vac8 is important for its role in membrane-mediated events such as vacuole fusion. It has been established both in vivo and in vitro that Vac8 is palmitoylated by the Asp-His-His-Cys (DHHC) protein Pfa3. However, the determinants of Vac8 critical for recognition by Pfa3 have yet to be elucidated. This is of particular importance because of the lack of a consensus sequence for palmitoylation. Here we show that Pfa3 was capable of palmitoylating each of the three N-terminal cysteines of Vac8 and that this reaction was most efficient when Vac8 is N-myristoylated. Additionally, when we analyzed the Src homology 4 (SH4) domain of Vac8 independent of the rest of the protein, palmitoylation by Pfa3 still occurred. However, the specificity of palmitoylation seen for the full-length protein was lost, and the SH4 domain was palmitoylated by all five of the yeast DHHC proteins tested. These data suggested that a region of the protein C-terminal to the SH4 domain was important for conferring specificity of palmitoylation. This was confirmed by use of a chimeric protein in which the SH4 domain of Vac8 was swapped for that of Meh1, another palmitoylated and N-myristoylated protein in yeast. In this case we saw specificity mimic that of wild type Vac8. Competition experiments revealed that the 11th armadillo repeat of Vac8 is an important element for recognition by Pfa3. This demonstrates that regions distant from the palmitoylated cysteines are important for recognition by DHHC proteins.  相似文献   
104.

Background

Genome sequences, now available for most pathogens, hold promise for the rational design of new therapies. However, biological resources for genome-scale identification of gene function (notably genes involved in pathogenesis) and/or genes essential for cell viability, which are necessary to achieve this goal, are often sorely lacking. This holds true for Neisseria meningitidis, one of the most feared human bacterial pathogens that causes meningitis and septicemia.

Results

By determining and manually annotating the complete genome sequence of a serogroup C clinical isolate of N. meningitidis (strain 8013) and assembling a library of defined mutants in up to 60% of its non-essential genes, we have created NeMeSys, a biological resource for Neisseria meningitidis systematic functional analysis. To further enhance the versatility of this toolbox, we have manually (re)annotated eight publicly available Neisseria genome sequences and stored all these data in a publicly accessible online database. The potential of NeMeSys for narrowing the gap between sequence and function is illustrated in several ways, notably by performing a functional genomics analysis of the biogenesis of type IV pili, one of the most widespread virulence factors in bacteria, and by identifying through comparative genomics a complete biochemical pathway (for sulfur metabolism) that may potentially be important for nasopharyngeal colonization.

Conclusions

By improving our capacity to understand gene function in an important human pathogen, NeMeSys is expected to contribute to the ongoing efforts aimed at understanding a prokaryotic cell comprehensively and eventually to the design of new therapies.  相似文献   
105.

Background

Next generation sequencing (NGS) platforms are currently being utilized for targeted sequencing of candidate genes or genomic intervals to perform sequence-based association studies. To evaluate these platforms for this application, we analyzed human sequence generated by the Roche 454, Illumina GA, and the ABI SOLiD technologies for the same 260 kb in four individuals.

Results

Local sequence characteristics contribute to systematic variability in sequence coverage (>100-fold difference in per-base coverage), resulting in patterns for each NGS technology that are highly correlated between samples. A comparison of the base calls to 88 kb of overlapping ABI 3730xL Sanger sequence generated for the same samples showed that the NGS platforms all have high sensitivity, identifying >95% of variant sites. At high coverage, depth base calling errors are systematic, resulting from local sequence contexts; as the coverage is lowered additional 'random sampling' errors in base calling occur.

Conclusions

Our study provides important insights into systematic biases and data variability that need to be considered when utilizing NGS platforms for population targeted sequencing studies.  相似文献   
106.

Background

Decisions involving risk often must be made under stressful circumstances. Research on behavioral and brain differences in stress responses suggest that stress might have different effects on risk taking in males and females.

Methodology/Principal Findings

In this study, participants played a computer game designed to measure risk taking (the Balloon Analogue Risk Task) fifteen minutes after completing a stress challenge or control task. Stress increased risk taking among men but decreased it among women.

Conclusions/Significance

Acute stress amplifies sex differences in risk seeking; making women more risk avoidant and men more risk seeking. Evolutionary principles may explain these stress-induced sex differences in risk taking behavior.  相似文献   
107.
Curcumin, the yellow pigment found in turmeric, exhibits potent chemopreventative properties in both in vivo and in vitro cancer models. We hypothesized that this effect may occur via curcumin-mediated changes in enzymes involved in both carcinogen bioactivation and estrogen metabolism. Female Swiss Webster mice were treated with either curcumin (200 mg/kg or 400 mg/kg, p.o.) or vehicle control for 1 or 2 weeks. The results demonstrated that curcumin had no effect on the catalytic activities of ovarian aromatase, hepatic catechol-O-methyltransferase or hepatic UDP-glucuronosyltransferase. However, both doses of curcumin caused a 25% decrease in CYP1A catalytic activity, but not polypeptide levels, following 2 weeks of treatment. Additionally, following 2 weeks of curcumin at 400 mg/kg, there was a 20% decrease in the catalytic activity and a 28% decrease in polypeptide levels of CYP3A. While 2 weeks of curcumin treatment (400 mg/kg) caused a 20% increase in glutathione S-transferase activity, there was no parallel increase in hepatic stores of the co-factor glutathione. In conclusion small changes in CYP1A, CYP3A and GST following long term treatment (2 weeks) suggest that the combination of all three metabolic pathways may play a small role in curcumin's chemopreventative action.  相似文献   
108.
Conventional vaccine production techniques are outdated, leaving the world defenseless to viruses and pathogens. Successful protection necessitates the innovation of strategies that can generate an induced defensive humoral and cellular response with: ease of mass production, nominal side-effects, and controlled design specificity, all while being cost effective. Fortunately, technology exists to facilitate such advances in this billion dollar industry and this review is focused on recent publications and patents which hold promise to revolutionize the fight against pathogenic illnesses.  相似文献   
109.
As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer‐lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature‐specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature‐specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature‐associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age‐related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号