首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2776篇
  免费   334篇
  国内免费   2篇
  2021年   33篇
  2019年   26篇
  2018年   25篇
  2017年   35篇
  2016年   31篇
  2015年   75篇
  2014年   93篇
  2013年   107篇
  2012年   134篇
  2011年   151篇
  2010年   112篇
  2009年   88篇
  2008年   117篇
  2007年   134篇
  2006年   141篇
  2005年   133篇
  2004年   126篇
  2003年   131篇
  2002年   132篇
  2001年   71篇
  2000年   38篇
  1999年   63篇
  1998年   38篇
  1997年   31篇
  1996年   34篇
  1995年   37篇
  1994年   40篇
  1993年   33篇
  1992年   57篇
  1991年   49篇
  1990年   52篇
  1989年   44篇
  1988年   26篇
  1987年   34篇
  1986年   34篇
  1985年   39篇
  1984年   26篇
  1983年   23篇
  1982年   31篇
  1981年   35篇
  1980年   32篇
  1979年   21篇
  1978年   37篇
  1977年   25篇
  1976年   23篇
  1975年   19篇
  1974年   32篇
  1973年   36篇
  1972年   21篇
  1967年   17篇
排序方式: 共有3112条查询结果,搜索用时 15 毫秒
991.
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.  相似文献   
992.
We describe biophysical and ultrastructural differences in genome release from adeno-associated virus (AAV) capsids packaging wild-type DNA, recombinant single-stranded DNA (ssDNA), or dimeric, self-complementary DNA (scDNA) genomes. Atomic force microscopy and electron microscopy (EM) revealed that AAV particles release packaged genomes and undergo marked changes in capsid morphology upon heating in physiological buffer (pH 7.2). When different AAV capsids packaging ss/scDNA varying in length from 72 to 123% of wild-type DNA (3.4 to 5.8 kb) were incrementally heated, the proportion of uncoated AAV capsids decreased with genome length as observed by EM. Genome release was further characterized by a fluorimetric assay, which demonstrated that acidic pH and high osmotic pressure suppress genome release from AAV particles. In addition, fluorimetric analysis corroborated an inverse correlation between packaged genome length and the temperature needed to induce uncoating. Surprisingly, scAAV vectors required significantly higher temperatures to uncoat than their ssDNA-packaging counterparts. However, externalization of VP1 N termini appears to be unaffected by packaged genome length or self-complementarity. Further analysis by tungsten-shadowing EM revealed striking differences in the morphologies of ssDNA and scDNA genomes upon release from intact capsids. Computational modeling and molecular dynamics simulations suggest that the unusual thermal stability of scAAV vectors might arise from partial base pairing and optimal organization of packaged scDNA. Our work further defines the biophysical mechanisms underlying adeno-associated virus uncoating and genome release.  相似文献   
993.
994.
995.
Two new species of Caddisflies from the Great Basin region in California and Nevada are described. Lepidostoma castalianum sp. nov., collected at a spring in the White Mts. of Mono Co., California, is closely related to L. verodum Ross. L. ojanum sp. nov., collected at three separate springs in the White Mts. of Inyo Co., California, and one spring in Mineral Co., Nevada, is a member of the unicolor species group, similar to L. frosti (Milne) and L. unicolor (Banks).  相似文献   
996.

Background and aims

Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera.

Methods

DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted.

Key Results

Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (MacrozamiaLepidozamiaEncephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia.

Conclusions

A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.  相似文献   
997.
Understanding genetic colour polymorphism has proved a major challenge, both in terms of the underlying genetic mechanisms and the evolutionarily forces maintaining such genetic variation. In this context, genetic differences in aggression or competitive-related traits may covary with the expression of alternative phenotypes, and affect the evolutionary stability and maintenance of colour polymorphisms. Genetic red and black head-colour morphs of the Gouldian finch (Erythrura gouldiae) co-occur in temporally and geographically stable frequencies in sympatric populations. Gouldian finches are obligate cavity-nesters with highly specific preferences for nest-site morphometry that directly affect reproductive success. Because intra- and interspecific competition for high quality nest-sites is prevalent, and fitness is directly related to nest-site quality, we investigated the relative access (and consequences for reproductive success) of alternative morphs to this critical limiting resource in the wild. Red males defended higher quality nest-sites, and overcame greater levels of nest-site competition against conspecifics and superior heterospecific competitors than black males. Red-headed males also produced more fledglings (especially with red-headed females) than black-headed males, independent of nest-site quality. Finally, the independent (positive) effect of nest-site quality on reproductive success was confirmed. Such competitive asymmetries are important to relative selection among coexisting morphs, and are likely to contribute to the maintenance of alternative sympatric colour-morphs in wild populations.  相似文献   
998.
Neuropathological cascades leading to reduced cholinergic transmission in Alzheimer’s disease led to development of AChE-inhibitors. Although lethal dose of some inhibitors cause interruption with AChE mediated mechanism but reversible AChE inhibitors can assist in protection from inhibition of AChE and hence in an aim to probe potential molecules as anticholinesterase and as reactivators, computationally structure-based approach has been exploited in this work for designing new 2-amino-3-pyridoixime-dipeptides conjugates. We have combined MD simulations with flexible ligand docking approach to determine binding specificity of 2-amino-3-pyridoixime dipeptides towards AChE (PDB 2WHP). PAS residues are found to be responsible for oxime-dipeptides binding along with ππ interactions with Trp86 and Tyr286, hydrogen bonding with side chains of Asp74 and Tyr341 (Gscore –10.801 and MM-GBSA free energy –34.89?kcal/mol). The docking results depicted complementary multivalent interactions along with good binding affinity as predicted from MM-GBSA analysis. The 2-amino-3-pyridoxime-(Arg-Asn) AChE systems subjected to MD simulations under explicit solvent systems with NPT and NVT ensemble. MD simulations uncovered dynamic behavior of 2-amino-3-pyridoxime-(Arg-Asn) and exposed its mobile nature and competence to form strong long range-order contacts towards active site residues to approach inhibited serine residue and facilitated via large contribution from hydrogen bonding and water bridges along with slow and large movements of adjacent important residues. In an effort to evaluate the complete potential surface profile, 2-amino-3-pyridoxime induced reactivation pathway of sarin–serine adduct has been investigated by the DFT approach at the vacuum MO6/6–311G (d, p) level along with the Poisson-Boltzmann solvation model and found to be of relatively low energy barrier. The pKa evaluation has revealed the major deprotonated 2-amino-3-pyridoixime species having pKa of 6.47 and hence making 2-amino-3-pyridoxime-(Arg-Asn) potential anticholinesterase and reactivator for AChE under the physiological pH.  相似文献   
999.
KCNE1 (minK), found in the human heart and cochlea, is a transmembrane protein that modulates the voltage-gated potassium KCNQ1 channel. While KCNE1 has previously been the subject of extensive structural studies in lyso-phospholipid detergent micelles, key observations have yet to be confirmed and refined in lipid bilayers. In this study, a reliable method for reconstituting KCNE1 into lipid bilayer vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (POPG) was developed. Microinjection of the proteoliposomes into Xenopus oocytes expressing the human KCNQ1 (K(V)7.1) voltage-gated potassium channel led to nativelike modulation of the channel. Circular dichroism spectroscopy demonstrated that the percent helicity of KCNE1 is significantly higher for the protein reconstituted in lipid vesicles than for the previously described structure in 1.0% 1-myristoyl-2-hydroxy-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (LMPG) micelles. SDSL electron paramagnetic resonance spectroscopic techniques were used to probe the local structure and environment of Ser28, Phe54, Phe57, Leu59, and Ser64 of KCNE1 in both POPC/POPG vesicles and LMPG micelles. Spin-labeled KCNE1 cysteine mutants at Phe54, Phe57, Leu59, and Ser64 were found to be located inside POPC/POPG vesicles, whereas Ser28 was found to be located outside the membrane. Ser64 was shown to be water inaccessible in vesicles but found to be water accessible in LMPG micelle solutions. These results suggest that key components of the micelle-derived structure of KCNE1 extend to the structure of this protein in lipid bilayers but also demonstrate the need to refine this structure using data derived from the bilayer-reconstituted protein to more accurately define its native structure. This work establishes the basis for such future studies.  相似文献   
1000.
A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX·chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX·chloride complex and a ternary MSOX·chloride·MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号