首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66552篇
  免费   4879篇
  国内免费   131篇
  2022年   270篇
  2021年   1263篇
  2020年   779篇
  2019年   1072篇
  2018年   1402篇
  2017年   1140篇
  2016年   1876篇
  2015年   2881篇
  2014年   3164篇
  2013年   4370篇
  2012年   4895篇
  2011年   4667篇
  2010年   3031篇
  2009年   2550篇
  2008年   3641篇
  2007年   3509篇
  2006年   3228篇
  2005年   2903篇
  2004年   2824篇
  2003年   2679篇
  2002年   2584篇
  2001年   1269篇
  2000年   1094篇
  1999年   1083篇
  1998年   745篇
  1997年   635篇
  1996年   494篇
  1995年   537篇
  1994年   454篇
  1993年   491篇
  1992年   672篇
  1991年   651篇
  1990年   610篇
  1989年   536篇
  1988年   441篇
  1987年   426篇
  1986年   395篇
  1985年   462篇
  1984年   444篇
  1983年   379篇
  1982年   309篇
  1981年   304篇
  1980年   285篇
  1979年   348篇
  1978年   280篇
  1977年   314篇
  1976年   285篇
  1975年   289篇
  1974年   269篇
  1973年   275篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Insulin-like growth factor-1 (IGF-1) is a serum protein which unexpectedly folds to yield two stable tertiary structures with different disulphide connectivities; native IGF-1 [18-61,6-48,47-52] and IGF-1 swap [18-61,6-47, 48-52]. Here we demonstrate in detail the biological properties of recombinant human native IGF-1 and IGF-1 swap secreted from Saccharomyces cerevisiae. IGF-1 swap had a approximately 30 fold loss in affinity for the IGF-1 receptor overexpressed on BHK cells compared with native IGF-1.The parallel increase in dose required to induce negative cooperativity together with the parallel loss in mitogenicity in NIH 3T3 cells implies that disruption of the IGF-1 receptor binding interaction rather than restriction of a post-binding conformational change is responsible for the reduction in biological activity of IGF-1 swap. Interestingly, the affinity of IGF-1 swap for the insulin receptor was approximately 200 fold lower than that of native IGF-1 indicating that the binding surface complementary to the insulin receptor (or the ability to attain it) is disturbed to a greater extent than that to the IGF-1 receptor. A 1.0 ns high-temperature molecular dynamics study of the local energy landscape of IGF-1 swap resulted in uncoiling of the first A-region alpha-helix and a rearrangement in the relative orientation of the A- and B-regions. The model of IGF-1 swap is structurally homologous to the NMR structure of insulin swap and CD spectra consistent with the model are presented. However, in the model of IGF-1 swap the C-region has filled the space where the first A-region alpha-helix has uncoiled and this may be hindering interaction of Val44 with the second insulin receptor binding pocket.  相似文献   
12.
13.
Epithelial ovarian carcinoma (EOC), the major cause of gynaecological cancer death, is a heterogeneous disease classified into five subtypes. Each subtype has distinct clinical characteristics and is associated with different genetic risk factors and molecular events, but all are treated with surgery and platinum/taxane regimes. Tumour progression and chemoresistance is generally associated with major metabolic alterations, notably altered mitochondrial function(s). Here, we report for the first time that the expression of the mitochondrial regulators PGC1α and TFAM varies between EOC subtypes; furthermore, we have identified a profile in clear-cell carcinoma consisting of undetectability of PGC1α/TFAM, and low ERα/Ki-67. By contrast, high-grade serous carcinomas were characterised by a converse state of PGC1α/TFAM, ERα positivity and a high Ki-67 index. Interestingly, loss of PGC1α/TFAM and ERα was found also in a non-clear cell EOC cell line made highly resistant to platinum in vitro. Similar to clear-cell carcinomas, these resistant cells also showed accumulation of glycogen. Altogether, our data provide mechanistic insights into the chemoresistant nature of ovarian clear-cell carcinomas. Furthermore, these findings corroborate the need to take into account the diversity of EOC and to develop subtype specific treatment strategies.  相似文献   
14.
Cerebellar granule cells (CGNs) are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs) mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-Itonic) is controversial. Earlier studies suggested that GoCs mediate a component of CGN-Itonic that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-Itonic in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-Itonic and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na+/K+-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23–30). Under these conditions, we reliably detected a GoC-dependent component of CGN-Itonic that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-Itonic. Inhibition of the Na+/K+-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na+/K+-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.  相似文献   
15.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine has been analyzed by fast detergent fractionation of isolated frog heart cells. Digitonin fractionation (0.5 mg/ml, 10 s at 2 degrees C in 20 mM 4-morpholinepropanesulfonic acid/3 mM EDTA/230 mM mannitol medium) was used to separate mitochondria and myofilaments from cytosol. To separate myofilaments from the other cellular compartments. Triton X-100 was used (2%, 15 s in the same medium as digitonin). For either resting or beating cells the total cellular contents of ATP, ADP, creatine phosphate and creatine was similar, nevertheless the O2 consumption was 6-times higher. The compartmentation of these metabolites was also identical. Myofilaments contain 1.1 nmol ADP per mg total cellular proteins. In the cytosolic compartment the metabolite concentrations, all measured in nmol per mg total cellular proteins, were: ATP, 13; ADP, 0.25-0.05; creatine phosphate, 18.5 and creatine, 14. This indicated that the reaction catalyzed by creatine kinase was in a state of (or near) equilibrium.  相似文献   
16.
In dispersed rat Leydig cells, colchicine was found to stimulate basal cAMP production and testosterone secretion in a dose and time-dependent manner, but to a lesser extent than LH. However, these drugs are unable to stimulate adenylate cyclase activity in plasma membranes isolated from these cells. The amount of testosterone secreted at 150 min under the influence of colchicine and LH added simultaneously was not different from the amount produced during stimulation by LH alone. It is only after exposure of the cells for 1 hr to colchicine that the accumulation of cAMP in response to LH was inhibited; furthermore, both intracellular and medium testosterone accumulation in response to the hormone were reduced. Similar effects were observed with two other alkaloids, vinblastine and podophyllotoxin. The three drugs also inhibited the stimulation of testosterone secretion by 8-Br-cAMP or choleratoxin. These studies suggest that the state of microtubule polymerization and/or tubulin can influence the process of steroidogenesis in rat Leydig cells.  相似文献   
17.
Summary A 20.5-month study was undertaken to determine detrital processing of the halophytesSpartina anglica, Elytrigia pungens, andHalimione portulacoides in three different habitats of an estuarine salt marsh in the South-West Netherlands. Decomposition was measured using litter-bags of three different mesh sizes to partition the effects of different faunal groups on decomposition. From April 1980 through October 1981 litter-bags were sampled regulary from a creek, the upper marsh, and from a plant-debris belt on the higher marsh. Dry weights and nutritive values were measured and animals were counted. Mainly rates of loss are reported here. Zonal differences were significant. At first, decomposition in the creek was most rapid. After two months the processes in the creek slowed down because of the trapping of silt by the bags, which probably simulated the natural course of the decomposition process in the water. Decomposition on the marsh followed the most regular pattern, while in the plant-debris belt the pattern was very irregular. Population dynamics of microfaunal organisms supported these findings. In the plant-debris belts loss rates seem to be higher than on the marsh, because of the influence of detritivorous macrofaunal organisms. The loss rates of the three plant species differed significantly.Halimione decomposed fastest, especially in the beginning, and in the plant-debris habitat. On the upper marsh and in the plant-debris belt the loss rates ofSpartina seem to be a little higher than those ofElytrigia.Communication No. 233, Delta Institute for Hydrobiological Research, Yerseke, The Netherlands.  相似文献   
18.
Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C‐terminal hydrolase UCH‐L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH‐L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH‐L1‐negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH‐L1 controls the early membrane‐associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c‐cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2‐ and AKT‐dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH‐L1C90S. These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH‐L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria‐based drug delivery systems.  相似文献   
19.
The ilvI and ilvH gene products were identified physically by electrophoretic analysis of in vivo-labelled polypeptides produced in minicells from plasmids carrying the wild-type ilvIH operon of Escherichia coli K-12 and derivatives of it. An analysis of the distribution of methionine residues in the amino-terminal portion of micro-quantities of the ilvI product eluted from gel showed that the translational start of the ilvI gene is the promoter-proximal one of three putative methionine codons predicted from the DNA sequence.  相似文献   
20.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号