首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69381篇
  免费   17863篇
  国内免费   19篇
  2023年   255篇
  2022年   319篇
  2021年   1478篇
  2020年   2729篇
  2019年   4379篇
  2018年   4856篇
  2017年   4904篇
  2016年   5470篇
  2015年   6220篇
  2014年   6058篇
  2013年   7388篇
  2012年   5675篇
  2011年   5213篇
  2010年   5251篇
  2009年   3723篇
  2008年   3459篇
  2007年   2914篇
  2006年   2671篇
  2005年   2446篇
  2004年   2272篇
  2003年   2186篇
  2002年   2030篇
  2001年   596篇
  2000年   432篇
  1999年   465篇
  1998年   461篇
  1997年   317篇
  1996年   292篇
  1995年   269篇
  1994年   264篇
  1993年   244篇
  1992年   168篇
  1991年   162篇
  1990年   160篇
  1989年   121篇
  1988年   112篇
  1987年   92篇
  1986年   72篇
  1985年   102篇
  1984年   101篇
  1983年   77篇
  1982年   90篇
  1981年   88篇
  1980年   85篇
  1979年   78篇
  1978年   39篇
  1977年   52篇
  1976年   38篇
  1975年   39篇
  1973年   43篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
93.
Forty-five populations of Pentanema corresponding to seven species included in the Pentanema conyzae clade have been studied using AFLP fingerprinting. The results show that allopolyploidization could have been involved in the diversification of this group, specifically in species P. langeanum and P. maletii. Molecular data confirm the presence of P. britannicum in the Iberian Peninsula and key steps are provided to identify the species that are morphologically the most challenging.  相似文献   
94.
Large‐scale biodiversity maps are essential to macroecology. However, between‐region comparisons can be more useful if patterns of observed species richness are supplemented by variations in dark diversity – the absent portion of the species pool. We aim to quantify and map plant diversity across Europe by using a measure that accounts for both observed and dark diversity. To do this we need to delimit suitable species pools, and evaluate the potential and limitation of a large‐scale dataset. We used Atlas Florae Europaeae (ca 20% of European plant species mapped within 50 × 50 km grid cells) and defined for each grid cell several species pools by applying various geographical and environmental filters: geographic species pool (number of species within 500 km radius), biogeographic species pool (additionally incorporating species distribution patterns, i.e. dispersion fields), site‐specific species pool (additionally integrating environmental preferences of species based on species co‐occurrence). We integrated dark diversity and observed diversity at a relative scale to calculate the completeness of site diversity: logistic expression of observed and dark diversity. We tested whether our results are robust against regional variation in data availability. We used independent regional databases to test if Atlas Florae Europaeae is a representative subset of total species richness. Environmental filtering was the most influential determinant of species pool size with more species filtered out in southern Europe. Both observed and dark diversity adhered to the well‐known latitudinal gradient, but completeness of site diversity varied throughout Europe with no latitudinal trend. Dark diversity patterns were fairly insensitive to variations in regional sampling intensity. Atlas Florae Europaeae represented well the total variation in plant diversity. In summary, dark diversity and completeness of site diversity add valuable information to broad‐scale diversity patterns since observed diversity is expressed at a relative scale.  相似文献   
95.
1. Time perception is seldom studied in invertebrates, with the limited experimental evidence being insufficient to provide a comprehensive pattern of the capacity of invertebrates to measure time and use it in decision‐making processes. 2. In this study, it was hypothesized that insect parasitoids have evolved the capacity to measure time precisely and to use it to optimize foraging decisions related to host exploitation. To examine time perception in females of the gregarious egg parasitoid Trichogramma euproctidis, the present study used their ability to adjust their investment (number of eggs laid) in a host to the initial transit duration (interval between the first contact with the host and the following contact with the substrate). Females utilize this method to assess host egg size, as a large egg necessarily requires more time to evaluate than a small host. In this study, the initial transit duration for a given sized egg was artificially extended by suspending it. 3. For similar sized hosts, female T. euproctidis significantly increased both oviposition duration and progeny allocation following a longer initial transit duration. 4. These results demonstrate the intrinsic capacity of this parasitoid to measure time and to adjust their progeny investment accordingly. This is believed to be one of the few demonstrations of a retrospective measure of time in an invertebrate.  相似文献   
96.
Transthyretin (TTR) protects against A-Beta toxicity by binding the peptide thus inhibiting its aggregation. Previous work showed different TTR mutations interact differently with A-Beta, with increasing affinities correlating with decreasing amyloidogenecity of the TTR mutant; this did not impact on the levels of inhibition of A-Beta aggregation, as assessed by transmission electron microscopy. Our work aimed at probing differences in binding to A-Beta by WT, T119M and L55P TTR using quantitative assays, and at identifying factors affecting this interaction. We addressed the impact of such factors in TTR ability to degrade A-Beta. Using a dot blot approach with the anti-oligomeric antibody A11, we showed that A-Beta formed oligomers transiently, indicating aggregation and fibril formation, whereas in the presence of WT and T119M TTR the oligomers persisted longer, indicative that these variants avoided further aggregation into fibrils. In contrast, L55PTTR was not able to inhibit oligomerization or to prevent evolution to aggregates and fibrils. Furthermore, apoptosis assessment showed WT and T119M TTR were able to protect against A-Beta toxicity. Because the amyloidogenic potential of TTR is inversely correlated with its stability, the use of drugs able to stabilize TTR tetrameric fold could result in increased TTR/A-Beta binding. Here we showed that iododiflunisal, 3-dinitrophenol, resveratrol, [2-(3,5-dichlorophenyl)amino] (DCPA) and [4-(3,5-difluorophenyl)] (DFPB) were able to increase TTR binding to A-Beta; however only DCPA and DFPB improved TTR proteolytic activity. Thyroxine, a TTR ligand, did not influence TTR/A-Beta interaction and A-Beta degradation by TTR, whereas RBP, another TTR ligand, not only obstructed the interaction but also inhibited TTR proteolytic activity. Our results showed differences between WT and T119M TTR, and L55PTTR mutant regarding their interaction with A-Beta and prompt the stability of TTR as a key factor in this interaction, which may be relevant in AD pathogenesis and for the design of therapeutic TTR-based therapies.  相似文献   
97.
Evidence has been accumulating to support the process of reinforcement as a potential mechanism in speciation. In many species, mate choice decisions are influenced by cultural factors, including learned mating preferences (sexual imprinting) or learned mate attraction signals (e.g., bird song). It has been postulated that learning can have a strong impact on the likelihood of speciation and perhaps on the process of reinforcement, but no models have explicitly considered learning in a reinforcement context. We review the evidence that suggests that learning may be involved in speciation and reinforcement, and present a model of reinforcement via learned preferences. We show that not only can reinforcement occur when preferences are learned by imprinting, but that such preferences can maintain species differences easily in comparison with both autosomal and sex-linked genetically inherited preferences. We highlight the need for more explicit study of the connection between the behavioral process of learning and the evolutionary process of reinforcement in natural systems.  相似文献   
98.
The nocturnally active weakly electric fish Gnathonemus petersii is known to employ active electrolocation for the detection of objects and for orientation in its environment. The fish emits pulse‐type electric signals with an electric organ and perceives these signals with more than 3,000 epidermal electroreceptor organs, the mormyromasts, which are distributed over the animal's skin surface. In this study, we measured the metric dimensions of the mormyromasts from different body regions to find structural and functional specialization of the various body parts. We focused on the two foveal regions of G. petersii, which are located at the elongated and movable chin (the Schnauzenorgan; SO) and at the nasal region (NR), the skin region between the mouth and the nares. These two foveal regions were compared to the dorsal part (back) of the fish, which contains typical nonfoveal mormyromasts. While the gross anatomy of the mormyromasts from all skin regions is similar, the metric dimensions of the main substructures differed. The mormyromasts at the SO are the smallest and contain the smallest receptor cells. In addition, the number of receptor cells per organ is lowest at the SO. In contrast, at the back the biggest receptor organs with the highest amount of receptor cells per organ occur. The mormyromasts at the NR are in several respects intermediate between those from the back and the SO. However, mormyromasts at the NR are longer than those at all other skin regions, the canal leading from the receptor pore to the inner chambers were the longest and the overlaying epidermal layers are the thickest. These results show that mormyromasts and the epidermis they are embedded in at both foveal regions differ specifically from those found on the rest of the body. The morphological specializations lead to functional specialization of the two foveae. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
99.
100.
Abstract. The A6 antigen - a surface-exposed component shared by mouse oval and biliary epithelial cells - was examined during prenatal development of mouse in order to elucidate its relation to liver progenitor cells. Immunohistochemical demonstration of the antigen was performed at the light and electron microscopy level beginning from the 9.5 day of gestation (26–28 somite pairs).
Up to the 11.5 day of gestation A6 antigen is found only in the visceral endoderm of yolk sac and gut epithelium, while liver diverticulum and liver are A6-negative. In the liver epithelial lineages A6 antigen behaves as a strong and reliable marker of biliary epithelial cells where it is found beginning from their emergence on the 15th day of gestation. It was not revealed in immature hepato-cytes beginning from the 16th day of gestation. However weak expression of the antigen was observed in hepato-blasts on 12–15 days of gestation possibly reflecting their ability to differentiate along either hepatocyte or biliary epithelial cell lineages.
Surprisingly, A6 antigen turned out to be a peculiar marker of the crythroid lineage: in mouse fetuses it distinguished A6 positive liver and spleen erythroblasts from A6 negative early hemopoietic cells of yolk sac origin. Moreover in the liver, A6 antigen probably distinguishes two waves of erythropoiesis: it is found on the erythroblasts from the 11.5 day of gestation onward while first extravascular erythroblasts appear in the liver on the 10th day of gestation. Both fetal and adult erythrocytes are A6-negative.
In the process of organogenesis A6 antigen was revealed in various mouse fetal organs. Usually it was found on plasma membranes of mucosal or ductular epithelial cells. Investigation of A6 antigen's physiological function would probably explain such specific localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号