首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   32篇
  2021年   7篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   21篇
  2013年   27篇
  2012年   24篇
  2011年   31篇
  2010年   13篇
  2009年   19篇
  2008年   16篇
  2007年   26篇
  2006年   26篇
  2005年   16篇
  2004年   21篇
  2003年   10篇
  2002年   14篇
  2001年   19篇
  2000年   24篇
  1999年   11篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1990年   6篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   8篇
  1977年   3篇
  1976年   3篇
  1974年   5篇
  1972年   2篇
  1971年   3篇
  1970年   4篇
  1969年   3篇
  1968年   4篇
  1967年   1篇
  1966年   7篇
  1965年   3篇
排序方式: 共有486条查询结果,搜索用时 15 毫秒
101.
A new radioimmunoassay (RIA) for human Chorionic Gonadotropin (hCG) was developed using murine monoclonal antibody to the beta-subunit of hCG (beta-hCG). The IgG fraction of the monoclonal antibody which did not react with 125I-beta-hCG was purified from hybridoma ascites, and covalently coupled to Sepharose 4B. This solid-phase antibody was incubated with standard hCG or serum sampled for 48 hours. The reaction medium was then removed by centrifugation and 125I-beta-hCG and anti-beta-hCG rabbit polyclonal antibody were added to the precipitate. The alcohol precipitation method was used for separating "bound" and "free" forms in the second reaction. The sensitivity for hCG in this assay system was 0.5 mIU/ml serum and the cross-reactivity with human Luteinizing Hormone (hLH) was 0.4%. This assay system was shown to be clinically applicable. Serial serum samples from two patients with trophoblastic disease were assayed and minute amounts of hCG, which could not be determined by conventional assay methods, could be assayed by this new RIA.  相似文献   
102.
We microneurographically recorded the traffic of sympathetic nerves leading to foot volar skin activity (SSA) and leg skeletal muscle activity (MSA) during isometric handgrip and simultaneously determined sweat rate by the ventilated capsule method and skin blood flow by laser-Doppler flowmetry in the innervating area of SSA. SSA increased abruptly and was almost constant during handgrip, accompanied by an increase in sweat rate, whereas skin blood flow showed no significant change during the handgrip. MSA showed a time-dependent increase during the course of handgrip. During arterial occlusion of the working forearm after handgrip, SSA decayed to the precontraction control level, whereas MSA remained at a higher level than during control. During involuntary biceps muscle contraction induced by electrical stimulation, both SSA and MSA increased. The results suggest that the SSA response during voluntary handgrip, which was demonstrated to contain mainly sudomotor activity, might be influenced by central command and input from peripheral mechanoreceptors but be influenced little by input from muscle chemoreceptors.  相似文献   
103.
104.
105.
106.
Although melanoma is the most aggressive skin cancer, recent advances in BRAF and/or MEK inhibitors against BRAF-mutated melanoma have improved survival rates. Despite these advances, a treatment strategy targeting NRAS-mutated melanoma has not yet been elucidated. We discovered CH5126766/RO5126766 as a potent and selective dual RAF/MEK inhibitor currently under early clinical trials. We examined the activity of CH5126766/RO5126766 in a panel of malignant tumor cell lines including melanoma with a BRAF or NRAS mutation. Eight cell lines including melanoma were assessed for their sensitivity to the BRAF, MEK, or RAF/MEK inhibitor using in vitro growth assays. CH5126766/RO5126766 induced G1 cell cycle arrest in two melanoma cell lines with the BRAF V600E or NRAS mutation. In these cells, the G1 cell cycle arrest was accompanied by up-regulation of the cyclin-dependent kinase inhibitor p27 and down-regulation of cyclinD1. CH5126766/RO5126766 was more effective at reducing colony formation than a MEK inhibitor in NRAS- or KRAS-mutated cells. In the RAS-mutated cells, CH5126766/RO5126766 suppressed the MEK reactivation caused by a MEK inhibitor. In addition, CH5126766/RO5126766 suppressed the tumor growth in SK-MEL-2 xenograft model. The present study indicates that CH5126766/RO5126766 is an attractive RAF/MEK inhibitor in RAS-mutated malignant tumor cells including melanoma.  相似文献   
107.
108.
109.
Platelet behavior was studied in rabbit decompression sickness which was brought about by the exposure to 6 ATA for 40 min (bottom time) followed by rapid decompression. Platelet counts significantly decreased after the decompression. Kinetic studies with 111In-oxine-labeled platelets revealed shortened survivals of circulating platelets, and audioradiograms indicated the accumulation of radioactivity in the lungs after the decompression. Although there was no change in the mode volume of platelets after the decompression, the transient appearance of circulating smaller or fragmented platelets suggested a random overdestruction of platelets. Whole and releasable adenine nucleotide contents of platelets were decreased significantly after the decompression. There were no significant changes in cytoplasmic adenine nucleotide contents. Therefore, in decompression sickness, the circulating platelets behaved similarly to those in acquired storage pool disease. Platelet thrombi were found in the pulmonary arteries, compatible with the accumulation of 111In-oxine-labeled platelets. These findings suggest that circulating air bubbles interact with platelets, causing the platelet release reaction, and these activated platelets participate in the formation of thrombi in experimental decompression sickness.  相似文献   
110.
Understanding how pain is processed in the brain has been an enduring puzzle, because there doesn''t appear to be a single “pain cortex” that directly codes the subjective perception of pain. An emerging concept is that, instead, pain might emerge from the coordinated activity of an integrated brain network. In support of this view, Woo and colleagues present evidence that distinct brain networks support the subjective changes in pain that result from nociceptive input and self-directed cognitive modulation. This evidence for the sensitivity of distinct neural subsystems to different aspects of pain opens up the way to more formal computational network theories of pain.On the surface, pain should have been one of the easier brain systems to understand. Its fundamental importance in organism defence means that its anatomy should be well conserved across species, unlike systems for language, for instance. And its relatively simple scalar signal (from less pain to more pain) should not require extensive computational processing, unlike sound or vision. However, since Penfield''s failure to convincingly locate a “pain cortex” during his classic awake brain stimulation studies in the 1950s [1], trying to piece together the pain system in the brain has been a story of frustration and debate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号