首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1061篇
  免费   57篇
  2023年   2篇
  2021年   19篇
  2020年   11篇
  2019年   23篇
  2018年   25篇
  2017年   17篇
  2016年   34篇
  2015年   50篇
  2014年   51篇
  2013年   75篇
  2012年   86篇
  2011年   111篇
  2010年   59篇
  2009年   43篇
  2008年   82篇
  2007年   80篇
  2006年   58篇
  2005年   71篇
  2004年   57篇
  2003年   42篇
  2002年   41篇
  2001年   5篇
  2000年   2篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1118条查询结果,搜索用时 651 毫秒
101.
Optically active pyrrolidinylmethylindole analogs related in structure to the benzenesulfonyltryptamine 5-HT(6) receptor antagonist MS-245 were evaluated and their R-isomers were found to bind with affinity higher than their S-enantiomers.  相似文献   
102.
Calretinin, a neuronal protein with well-defined calcium-binding properties, has a poorly defined function. The pH dependent properties of calretinin (CR), the N-terminal (CR I-II), and C-terminal (CR III-VI) domains were investigated. A drop in pH within the intracellular range (from pH 7.5 to pH 6.5) leads to an increased hydrophobicity of calcium-bound CR and its domains as reported by fluorescence spectroscopy with the hydrophobic probe 2-(p-toluidino)-6-naphthalenesulfonic acid (TNS). The TNS data for the N- and C-terminal domains of CR are additive, providing further support for their independence within the full-length protein. Our work concentrated on CR I-II, which was found to have hydrophobic properties similar to calmodulin at lower pH. The elution of CR I-II from a phenyl-Sepharose column was consistent with the TNS data. The pH-dependent structural changes were further localized to residues 13-28 and 44-51 using nuclear magnetic resonance spectroscopy chemical shift analysis, and there appear to be no large changes in secondary structure. Protonation of His 12 and/or His 27 side chains, coupled with calcium chelation, appears to lead to the organization of a hydrophobic pocket in the N-terminal domain. CR may sense and respond to calcium, proton, and other signals, contributing to conflicting data on the proteins role as a calcium sensor or calcium buffer.  相似文献   
103.
104.
In a previous study we have identified Fmc1p, a mitochondrial protein involved in the assembly/stability of the yeast F0F1-ATP synthase at elevated temperatures. The deltafmc1 mutant was shown to exhibit a severe phenotype of very slow growth on respiratory substrates at 37 degrees C. We have isolated ODC1 as a multicopy suppressor of the fmc1 deletion restoring a good respiratory growth. Odc1p expression level was estimated to be at least 10 times higher in mitochondria isolated from the deltafmc1/ODC1 transformant as compared with wild type mitochondria. Interestingly, ODC1 encodes an oxodicarboxylate carrier, which transports alpha-ketoglutarate and alpha-ketoadipate or any other transported tricarboxylic acid cycle intermediate in a counter-exchange through the inner mitochondrial membrane. We show that the suppression of the respiratory-growth-deficient fmc1 by the overexpressed Odc1p was not due to a restored stable ATP synthase. Instead, the rescuing mechanism involves an increase in the flux of tricarboxylic acid cycle intermediate from the cytosol into the mitochondria, leading to an increase in the alpha-ketoglutarate oxidative decarboxylation, resulting in an increase in mitochondrial substrate-level-dependent ATP synthesis. This mechanism of metabolic bypass of a defective ATP synthase unravels the physiological importance of intramitochondrial substrate-level phosphorylations. This unexpected result might be of interest for the development of therapeutic solutions in pathologies associated with defects in the oxidative phosphorylation system.  相似文献   
105.
106.
107.
LAS enzymes are a group of metallopeptidases that share an active site architecture and a core folding motif and have been named according to the group members lysostaphin, D-Ala-D-Ala carboxypeptidase and sonic hedgehog. Escherichia coli MepA is a periplasmic, penicillin-insensitive murein endopeptidase that cleaves the D-alanyl-meso-2,6-diamino-pimelyl amide bond in E. coli peptidoglycan. The enzyme lacks sequence similarity with other peptidases, and is currently classified as a peptidase of unknown fold and catalytic class in all major data bases. Here, we build on our observation that two motifs, characteristic of the newly described LAS group of metallopeptidases, are conserved in MepA-type sequences. We demonstrate that recombinant E. coli MepA is sensitive to metal chelators and that mutations in the predicted Zn2+ ligands His-113, Asp-120, and His-211 inactivate the enzyme. Moreover, we present the crystal structure of MepA. The active site of the enzyme is most similar to the active sites of lysostaphin and D-Ala-D-Ala carboxypeptidase, and the fold is most closely related to the N-domain of sonic hedgehog. We conclude that MepA-type peptidases are LAS enzymes.  相似文献   
108.
Using an animal model system and depletion-rescue strategies, we have addressed the requirement and functions of armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF) and p120 catenins in early vertebrate embryogenesis. We find that xARVCF and Xp120 are essential to development given that depletion of either results in disrupted gastrulation and axial elongation, which are specific phenotypes based on self-rescue analysis and further criteria. Exogenous xARVCF or Xp120 cross-rescued depletion of the other, and each depletion was additionally rescued with (carefully titrated) dominant-negative RhoA or dominant-active Rac. Although xARVCF or Xp120 depletion did not appear to reduce the adhesive function of C-cadherin in standard cell reaggregation and additional assays, C-cadherin levels were somewhat reduced after xARVCF or Xp120 depletion, and rescue analysis using partial or full-length C-cadherin constructs suggested contributory effects on altered adhesion and signaling functions. This work indicates the required functions of both p120 and ARVCF in vertebrate embryogenesis and their shared functional interplay with RhoA, Rac, and cadherin in a developmental context.  相似文献   
109.
Depending on the redox-status, the serpin plasminogen activator inhibitor type 2 (PAI-2) can exist in either a stable monomeric or polymerogenic form. The latter form, which spontaneously forms loop-sheet polymers, has an open beta-sheet A and is stabilized by a disulfide bond between C79 (in the CD-loop) and C161 (at the bottom of PAI-2). Reduction of this bond results in a closing of the beta-sheet A and converts PAI-2 to a stable monomeric form. Here we show that the stable monomeric and polymerogenic forms of PAI-2 are fully interconvertible, depending on redox-status of the environment. Our intramolecular distance measurements indicate that the CD-loop folds mainly on one side of the stable monomeric form of the inhibitor. However, the loop can translocate about 54A to the bottom of PAI-2 so that the C79-C161 disulfide bond can form under oxidizing conditions. We show also that the redox-active C79 can form a disulfide-link to the matrix protein vitronectin, suggesting that vitronectin can stabilize active PAI-2 in extracellular compartments. PAI-2 is therefore a rare example of a redox-sensitive protein for which the activity and polymerization ability are regulated by reversible disulfide bond formation leading to major translocation of a loop and significant conformational changes in the molecule.  相似文献   
110.
Doxorubicin and other anthracyclines are among the most potent chemotherapeutic drugs for the treatment of acute leukaemia, lymphomas and different types of solid tumours such as breast, liver and lung cancers. Their clinical use is, however, limited by the risk of severe cardiotoxicity, which can lead to irreversible congestive heart failure. There is increasing evidence that essential components of myocardial energy metabolism are among the highly sensitive and early targets of doxorubicin-induced damage. Here we review doxorubicin-induced detrimental changes in cardiac energetics, with an emphasis on the emerging importance of defects in energy-transferring and -signalling systems, like creatine kinase and AMP-activated protein kinase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号