首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1071篇
  免费   91篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   11篇
  2016年   20篇
  2015年   29篇
  2014年   27篇
  2013年   69篇
  2012年   52篇
  2011年   58篇
  2010年   30篇
  2009年   35篇
  2008年   61篇
  2007年   52篇
  2006年   49篇
  2005年   57篇
  2004年   47篇
  2003年   52篇
  2002年   49篇
  2001年   38篇
  2000年   44篇
  1999年   43篇
  1998年   13篇
  1997年   15篇
  1996年   10篇
  1995年   10篇
  1994年   4篇
  1993年   12篇
  1992年   27篇
  1991年   30篇
  1990年   20篇
  1989年   16篇
  1988年   8篇
  1987年   13篇
  1986年   4篇
  1985年   9篇
  1984年   14篇
  1983年   8篇
  1982年   11篇
  1981年   7篇
  1980年   6篇
  1979年   5篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
排序方式: 共有1162条查询结果,搜索用时 15 毫秒
101.
102.
The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host''s ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.  相似文献   
103.
104.
The present study investigated the pharmacological properties of dopamine receptors that functioned in the termination of pupal diapause in the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Dopamine receptors are classified according to their structure and function into two subfamilies as D1‐ and D2‐like receptors. D1‐like receptors activate, whereas D2‐like receptors inhibit, adenylate cyclase. We examined the effects of agonists and antagonists selective for D1‐ and D2‐like receptors on the diapause state. As A. pernyi is a long‐day species, pupal diapause is maintained during short days and can be terminated by exposure to a long‐day photoperiod. The D2‐like receptor‐selective agonist quinpirole delayed the timing of adult emergence under long days, and the D2‐receptor‐selective antagonist sulpiride terminated pupal diapause even under a short‐day photoperiod. The D1‐like receptor‐selective agonist and antagonist, SKF‐38393 and SCH‐23390, respectively, caused no significant effects on diapause pupae. These results suggest that not D1‐ but D2‐like receptors mediated diapause regulation in A. pernyi. This dopamine pathway appeared to block the termination of pupal diapause. Furthermore, the actions of the cAMP analog 8‐CPT‐cAMP and dopamine receptor antagonists upon diapause pupae were similar, which supports the notion that D2‐like receptors involved in diapause of this insect prevent adenylate cyclase from producing cAMP like vertebrate D2‐like receptors. Taken together, our findings suggest that dopamine blocked diapause termination through D2‐like receptors that inhibited adenylate cyclase in A. pernyi. During short days under which diapause was maintained in pupae, the dopaminergic mechanism might be stimulated to suppress cAMP levels in cells regulating diapause.  相似文献   
105.
We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC.  相似文献   
106.

Background

Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC) synthase, cytochrome P450(c21).

Methodology/Principal Findings

The expression of P450(c21) was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG) was demonstrated by metabolism analysis of 3H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21), P450(2D4), P450(11β1) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT) and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM) doses of CORT for 1 h.

Conclusions/Significance

These results imply the complete pathway of corticosteroid synthesis of ‘pregnenolone →PROG→DOC→CORT’ in the hippocampal neurons. Both P450(c21) and P450(2D4) can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.  相似文献   
107.
108.
109.
The immunodominant antigen A, IsaA, of Staphylococcus aureus was found to include a putative soluble lytic transglycosylase domain in its C-terminal region. Since the presence of this distinctive domain suggested that the protein might participate in peptidoglycan turnover, as indicated in Gram-negative bacteria, its cellular location was investigated. The protein was found not only in the culture supernatant but also in the cell wall fraction. To estimate its physiological role for the bacterium, its cell surface distribution was studied by immunoelectron microscopy. Protein A-gold particles binding to the immune complex were mainly located on the septal region of the bacterial cell surface. These data suggested that IsaA might be involved in bacterial cell separation through a preferential interaction with peptidoglycan chain.  相似文献   
110.
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号