首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   56篇
  2023年   2篇
  2022年   1篇
  2021年   14篇
  2020年   7篇
  2019年   13篇
  2018年   6篇
  2017年   20篇
  2016年   16篇
  2015年   19篇
  2014年   34篇
  2013年   46篇
  2012年   47篇
  2011年   48篇
  2010年   39篇
  2009年   25篇
  2008年   24篇
  2007年   24篇
  2006年   24篇
  2005年   24篇
  2004年   18篇
  2003年   22篇
  2002年   19篇
  2001年   9篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
101.
Cell cultures of Linum species store 6-methoxypodophyllotoxin (MPTOX), podophyllotoxin (PTOX) and related lignans as O-glucosides. UDP-glucose:(M)PTOX 7-O-glucosyltransferase has been detected and characterised in protein preparations of suspension-cultured cells of Linum nodiflorum L. (Linaceae). The maximal lignan glucoside contents in the cells are preceded by a rapid increase of the specific glucosyltransferase activity on day six of the culture period. MPTOX glucoside is the major lignan with up to 1.18 mg g(-1) of the cell dry wt which is more than 30-fold of the PTOX glucoside content. Of the three aryltetralin lignans tested as substrates, PTOX and MPTOX display comparable apparent K(m) values of 4.7 and 5.4 microM, respectively. 5'-Demethoxy-6-methoxypodophyllotoxin is converted with the highest velocity of 25.2 pkat mg(-1) while also possessing a higher K(m) of 14.7 microM. Two-substrate test series indicate that all three compounds compete for the active site of a single protein. The structurally similar lignan beta-peltatin acts as competitive inhibitor as well. However, the 6-O-glucosidation is most likely catalysed by a separate enzyme. The (M)PTOX 7-O-glucosyltransferase works best at a pH around 9 and a temperature around 35 degrees C. A 15-30% increase of the reaction rate is effected by the addition of 0.9 mM Mn(2+).  相似文献   
102.
EndoG is a ubiquitous nuclease that is translocated into the nucleus during apoptosis to participate in DNA degradation. The enzyme cleaves double- and single-stranded DNA and RNA. Related nucleases are found in eukaryotes and prokaryotes, which have evolved sophisticated mechanisms for genome protection against self-antagonizing nuclease activity. Common mechanisms of inhibition are secretion, sequestration into a separate cellular compartment or by binding to protein inhibitors. Although EndoG is silenced by compartmentalization into the mitochondrial intermembrane space, a nucleus-localized protein inhibitor protects cellular polynucleotides from degradation by stray EndoG under non-apoptotic conditions in Drosophila. Here, we report the first three-dimensional structure of EndoG in complex with its inhibitor EndoGI. Although the mechanism of inhibition is reminiscent of bacterial protein inhibitors, EndoGI has evolved independently from a generic protein-protein interaction module. EndoGI is a two-domain protein that binds the active sites of two monomers of EndoG, with EndoG being sandwiched between EndoGI. Since the amino acid sequences of eukaryotic EndoG homologues are highly conserved, this model is valid for eukaryotic dimeric EndoG in general. The structure indicates that the two active sites of EndoG occupy the most remote spatial position possible at the molecular surface and a concerted substrate processing is unlikely.  相似文献   
103.
The final reactions of rosmarinic acid biosynthesis, the introduction of the aromatic 3- and 3′-hydroxyl groups, are catalysed by cytochrome P450-dependent hydroxylases. The cDNAs encoding CYP98A14 as well as a NADPH:cytochrome P450 reductase (CPR) were isolated from Coleus blumei and actively expressed in Saccharomyces cerevisiae. The CYP98A14-cDNA showed an open reading frame of 1521 nucleotides with high similarities to 4-coumaroylshikimate/quinate 3-hydroxylases. Yeast microsomes harbouring the CYP98A14 protein catalysed the 3-hydroxylation of 4-coumaroyl-3′,4′-dihydroxyphenyllactate and the 3′-hydroxylation of caffeoyl-4′-hydroxyphenyllactate, in both cases forming rosmarinic acid. Apparent K m-values for 4-coumaroyl-3′,4′-dihydroxyphenyllactate and caffeoyl-4′-hydroxyphenyllactate were determined to be at 5 μM and 40 μM, respectively. CYP98A14 differs from CYP98s from other plants, since 4-coumaroylshikimate or -quinate were not accepted as substrates. Coexpression of the Coleus blumei CPR and CYP98A14 in the same yeast cells increased the hydroxylation activity up to sevenfold. CYP98A14 from Coleus blumei is a novel bifunctional cytochrome P450 specialised for rosmarinic acid biosynthesis.  相似文献   
104.
The genetic control of leg development is well characterized in the fly Drosophila melanogaster. These control mechanisms, however, must differ to some degree between different insect species to account for the morphological diversity of thoracic legs in the insects. The legs of the flour beetle Tribolium castaneum differ from the Drosophila legs in their developmental mode as well as in their specific morphology especially at the larval stage. In order to identify genes involved in the morphogenesis of the Tribolium larval legs, we have analyzed EGFP enhancer trap lines of Tribolium. We have identified the zfh2 gene as a novel factor required for normal leg development in Tribolium. RNA interference with zfh2 function leads to two alternative classes of leg phenotype. The loss of a leg segment boundary and the generation of ectopic outgrowths in one class of phenotype suggest a role in leg segmentation and segment growth. The malformation of the pretarsal claw in the second class of phenotype suggests a role in distal development and the morphogenesis of the claw-shaped morphology of the pretarsus. This suggests that zfh2 is involved in the regulation of an unidentified target gene in a concentration-dependent manner. Our results demonstrate that enhancer trap screens in T. castaneum have the potential to identify novel gene functions regulating specific developmental processes.  相似文献   
105.
Bone morphogenetic proteins (BMPs) - expressed in the developing retina - are known to be involved in the regulation of cell proliferation and apoptosis in several tumor entities. The objective of this study was to determine the role of the BMP4 pathway in retinoblastoma cells, which are absent in a functional retinoblastoma (RB1) gene. BMP receptors were detected in all retinoblastoma cell lines investigated. A correct transmission of BMP signaling via the Smad1/5/8 pathway could be demonstrated in WERI-Rb1 retinoblastoma cells and application of recombinant human BMP4 resulted in an increase in apoptosis, which to a large extend is caspase independent. Cell proliferation was not affected by BMP4 signaling, although the pRb-related proteins p107 and p130, contributing to the regulation of the same genes, are still expressed. WERI-Rb1 cells exhibit elevated endogenous levels of p21(CIP1) and p53, but we did not detect any increase in p53, p21(CIP1)or p27(KIP1) expression levels. Id proteins became, however, strongly up-regulated upon exogenous BMP4 treatment. Thus, RB1 loss in WERI-Rb1 cells is obviously not compensated for by pRb-independent (e.g. p53-dependent) cell cycle control mechanisms, preventing an anti-proliferative response to BMP4, which normally induces cell cycle arrest.  相似文献   
106.
Background aimsThe number of circulating endothelial progenitor cells (EPC) depends on cytokine release and is also associated with cardiovascular risk factors. During cardiopulmonary bypass (CPB) the endothelium is the first organ to be affected by mechanical and immunologic stimuli. We hypothesized that the magnitude of EPC mobilization by CPB correlates with the pre-operative cardiovascular morbidity profile.MethodsEPC were quantified in blood samples from 30 patients who underwent cardiac surgery by magnetic bead isolation and fluorescence-activated cell sorting (FACS) analysis, based on concomitant expression of CD34, CD133 and CD309. Patients were divided into two groups based on the European System for Cardiac Operative Risk Evaluation (EuroSCORE): low risk (LR) and high risk (HR). Ten healthy volunteers served as controls. Samples were obtained before the start of CPB and at 1 and 24 h post-operatively. Plasma samples were collected for determination of release levels of cytokines and growth factors.ResultsAll CPB patients showed a significantly reduced basal number of EPC compared with healthy individuals (LR 5.60 ± 0.39/mL, HR 3.89 ± 0.34/ mL, versus control 0.807 ± 0.82/mL, P = 0.012 versus LR, P < 0.001 versus HR). CPB induced EPC release that peaked 1 h after surgery (pre-operative 4.79 ± 0.32/mL, 1 h 57.49 ± 5.31/mL, 24 h 6.67 ± 1.05/mL, P < 0.001 pre-operative versus 1 h, P < 0.001 pre-operative versus 24 h) and was associated with the duration of CPB. However, EPC release was significantly attenuated in HR patients (33.09 ± 3.58/mL versus 81.89 ± 4.36/mL at 1 h after CPB, P < 0.0001) and inversely correlated with the pre-operative EuroSCORE. Serum granulocyte–colony-stimulating factor (G-CSF), stem cell factor (SCF) and vascular endothelial growth factor (VEGF) levels increased throughout the observation period and were also correlated with the EPC count.ConclusionsCardiovascular risk factors influence the mobilization of EPC from the bone marrow after stimulation by CPB. This could be secondary to impaired mobilization or the result of increased EPC turnover, and may have implications for future cell therapy strategies in cardiac surgical patients.  相似文献   
107.
108.
Context and objective: Human hepatocellular carcinoma (HCC) is a severe malignant disease, and accurate and reliable diagnostic markers are still needed. This study was aimed for the discovery of novel marker candidates by quantitative proteomics.

Methods and results: Proteomic differences between HCC and nontumorous liver tissue were studied by mass spectrometry. Among several significantly upregulated proteins, translocator protein 18 (TSPO) and Ras-related protein Rab-1A (RAB1A) were selected for verification by immunohistochemistry in an independent cohort. For RAB1A, a high accuracy for the discrimination of HCC and nontumorous liver tissue was observed.

Conclusion: RAB1A was verified to be a potent biomarker candidate for HCC.  相似文献   

109.
Reliable distribution maps are crucial for the management of invasive plant species. An alternative to traditional field surveys is the use of remote sensing data, which allows coverage of large areas. However, most remote sensing studies on invasive plant species focus on mapping large stands of easily detectable study species. In this study, we used hyperspectral remote sensing data in combination with field data to derive a distribution map of an invasive bryophyte species, Campylopus introflexus, on the island of Sylt in Northern Germany. We collected plant cover data on 57 plots to calibrate the model and presence/absence data of C. introflexus on another 150 plots for independent validation. We simultaneously acquired airborne hyperspectral (APEX) images during summer 2014, providing 285 spectral bands. We used a Maxent modelling approach to map the distribution of C. introflexus. Although C. introflexus is a small and inconspicuous species, we were able to map its distribution with an overall accuracy of 75 %. Reducing the sampling effort from 57 to 7 plots, our models performed fairly well until sampling effort dropped below 12 plots. The model predicts that C. introflexus is present in about one quarter of the pixels in our study area. The highest percentage of C. introflexus is predicted in the dune grassland. Our findings suggest that hyperspectral remote sensing data have the potential to provide reliable information about the degree of bryophyte invasion, and thus provide an alternative to traditional field mapping approaches over large areas.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号