首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2124篇
  免费   254篇
  2021年   29篇
  2020年   16篇
  2019年   29篇
  2018年   22篇
  2017年   28篇
  2016年   32篇
  2015年   63篇
  2014年   102篇
  2013年   100篇
  2012年   142篇
  2011年   119篇
  2010年   108篇
  2009年   66篇
  2008年   89篇
  2007年   100篇
  2006年   97篇
  2005年   98篇
  2004年   74篇
  2003年   80篇
  2002年   75篇
  2001年   65篇
  2000年   79篇
  1999年   47篇
  1998年   37篇
  1997年   25篇
  1996年   36篇
  1995年   31篇
  1994年   29篇
  1993年   39篇
  1992年   42篇
  1991年   39篇
  1990年   36篇
  1989年   28篇
  1988年   37篇
  1987年   20篇
  1986年   28篇
  1985年   25篇
  1984年   25篇
  1983年   15篇
  1980年   10篇
  1979年   12篇
  1978年   15篇
  1977年   12篇
  1974年   13篇
  1973年   14篇
  1972年   16篇
  1970年   11篇
  1968年   12篇
  1967年   12篇
  1966年   11篇
排序方式: 共有2378条查询结果,搜索用时 15 毫秒
91.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
92.
During male–male competition, evolution can favor alternative reproductive tactics. This often results in a dominant morph that holds a resource, such as a nest for egg laying, which competes with a smaller sneaker morph that reproduces by stealing fertilizations. The salinity environment can influence male growth rates, for example, via osmoregulatory costs, which in turn may influence the use of sneaker tactics for small males competing for mating opportunities. Salinity can also affect sperm directly; however, little is known of how salinity influences sneaker tactics through sperm performance. We sampled males of the invasive round goby (Neogobius melanostomus) from two environments, a freshwater river and a brackish estuary. This fish has two male morphs: nest‐holding dark males and non‐nest‐holding light males. We examined the role of water salinity of 0, 8, and 16 on sperm performance and found that for estuarine males, a salinity of 0 reduced sperm velocity compared to a salinity of 8 and 16. Riverine males had low velocity in all salinities. Sperm viability also decreased by over 30% in 0 salinity, compared to 8 and 16, for fish from both environments. Gobies produce ejaculate contents in specialized glands that could in theory shield sperm in an adverse environment. However, gland contents did not improve sperm performance in our tests. Body mass and age estimates indicate that riverine males invested more in somatic growth compared to estuarine males. Estuarine light morph males had a high enough gonadosomatic index to indicate sneaker tactics. We propose that when sperm performance is low, such as for the riverine males, sneaker tactics are ineffective and will be selected against or phenotypically suppressed. Instead, we interpret the increased investment in somatic growth found in riverine males as a life‐history decision that is advantageous when defending a nest in the next reproductive season.  相似文献   
93.
94.
95.
Proteomics-based clinical studies have been shown to be promising strategies for the discovery of novel biomarkers of a particular disease. Here, we present a study of hepatocellular carcinoma (HCC) that combines complementary two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography (LC-MS)-based approaches of quantitative proteomics. In our proteomic experiments, we analyzed a set of 14 samples (7 × HCC versus 7 × nontumorous liver tissue) with both techniques. Thereby we identified 573 proteins that were differentially expressed between the experimental groups. Among these, only 51 differentially expressed proteins were identified irrespective of the applied approach. Using Western blotting and immunohistochemical analysis the regulation patterns of six selected proteins from the study overlap (inorganic pyrophosphatase 1 (PPA1), tumor necrosis factor type 1 receptor-associated protein 1 (TRAP1), betaine-homocysteine S-methyltransferase 1 (BHMT)) were successfully verified within the same sample set. In addition, the up-regulations of selected proteins from the complements of both approaches (major vault protein (MVP), gelsolin (GSN), chloride intracellular channel protein 1 (CLIC1)) were also reproducible. Within a second independent verification set (n = 33) the altered protein expression levels of major vault protein and betaine-homocysteine S-methyltransferase were further confirmed by Western blots quantitatively analyzed via densitometry. For the other candidates slight but nonsignificant trends were detectable in this independent cohort. Based on these results we assume that major vault protein and betaine-homocysteine S-methyltransferase have the potential to act as diagnostic HCC biomarker candidates that are worth to be followed in further validation studies.Hepatocellular carcinoma (HCC)1 currently is the fifth most common malignancy worldwide with an annual incidence up to 500 per 100,000 individuals depending on the geographic region investigated. Whereas 80% of new cases occur in developing countries, the incidence increases in industrialized nations including Western Europe, Japan, and the United States (1). To manage patients with HCC, tumor markers are very important tools for diagnosis, indicators of disease progression, outcome prediction, and evaluation of treatment efficacy. Several tumor markers have been reported for HCC, including α-fetoprotein (AFP) (2), Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3) (3), and des-γ-carboxyl prothrombin (DCP) (4). However, none of these tumor markers show 100% sensitivity or specificity, which calls for new and better biomarkers.To identify novel biomarkers of HCC, many clinical studies using “omics”-based methods have been reported over the past decade (56). In particular, the proteomics-based approach has turned out to be a promising one, offering several quantification techniques to reveal differences in protein expression that are caused by a particular disease. In most studies, the well-established 2D-DIGE technique has been applied for protein quantification followed by identification via mass spectrometry (715). Even if the quantification is very accurate and sensitive in this gel-based approach, the relatively high amount of protein sample necessary for protein identification is the major disadvantage of this technique. Several mass-spectrometry-based quantitative studies using labeling-techniques like SILAC (stable isotope labeling by amino acids in cell culture) or iTRAQ (isobaric tags for relative and absolute quantification) have also been carried out for biomarker discovery of HCC (1618). Here, the concomitant protein quantification and identification in a mass spectrometer allows high-throughput analyses. However, such experiments imply additional labeling reactions (in case of iTRAQ) or are limited to tissue culture systems (in case of SILAC). In the latter case, one can overcome the limitation by using the isotope-labeled proteins obtained from tissue culture as an internal standard added to a corresponding tissue sample. This approach is known as CDIT (culture-derived isotope tags) and was applied in a HCC study, very recently (19). Label-free proteomics approaches based on quantification by ion-intensities or spectral counting offer another possibility for biomarker discovery. These approaches are relatively cheap compared with the labeling approaches, because they do not require any labeling reagents and furthermore they allow for high-throughput and sensitive analyses in a mass spectrometer. A quantitative study of HCC using spectral counting has been reported (20), whereas to our knowledge an ion-intensity-based study has not been performed yet. Apart from these quantification strategies, protein alterations in HCC have been studied by MALDI imaging, as well. Here, the authors could show that based on its proteomic signature, hepatocellular carcinoma can be discriminated with high accuracy from liver metastasis samples or other cancer types (21) as well as liver cirrhosis (22). Based on these results, it could be assumed that MALDI imaging might be a promising alternative to standard histological methods in the future.Here, we report a quantitative proteomic study that combines two different techniques, namely the well-established 2D-DIGE approach and a label-free ion-intensity-based quantification via mass spectrometry and liquid chromatography. To our knowledge this is the first time such a combined study was performed with regard to hepatocellular carcinoma. By comparing the results of both studies, we aim to identify high-confident biomarker candidates of HCC, as gel- and LC-MS-based techniques are complementary. To verify the differential protein expressions detected in our proteomic studies we performed additional immunological verifications for selected proteins within two different sample sets (Fig. 1).Open in a separate windowFig. 1.Schematic representation of the applied workflow.  相似文献   
96.
Intracellular transport and maintenance of the endomembrane system in eukaryotes depends on formation and fusion of vesicular carriers. A seeming discrepancy exists in the literature about the basic mechanism in the scission of transport vesicles that depend on GTP‐binding proteins. Some reports describe that the scission of COP‐coated vesicles is dependent on GTP hydrolysis, whereas others found that GTP hydrolysis is not required. In order to investigate this pivotal mechanism in vesicle formation, we analyzed formation of COPI‐ and COPII‐coated vesicles utilizing semi‐intact cells. The small GTPases Sar1 and Arf1 together with their corresponding coat proteins, the Sec23/24 and Sec13/31 complexes for COPII and coatomer for COPI vesicles were required and sufficient to drive vesicle formation. Both types of vesicles were efficiently generated when GTP hydrolysis was blocked either by utilizing the poorly hydrolyzable GTP analogs GTPγS and GMP‐PNP, or with constitutively active mutants of the small GTPases. Thus, GTP hydrolysis is not required for the formation and release of COP vesicles.  相似文献   
97.
98.
99.
Highlights? Pancreatic lineage progression is governed by PcG-dependent chromatin remodeling ? A temporal chromatin signature predicts regulators of pancreatic development ? Endocrine cells differentiated from hESCs in vivo are similar to native human islets ? In vitro-produced malfunctioning endocrine cells exhibit aberrant chromatin structure  相似文献   
100.
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号