首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   6篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2002年   1篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
11.
Biological control of fungi causing root rot on sugar beet by native Streptomyces isolates (C and S2) was evaluated in this study. The dry weight and colony forming unit (CFU) of S2 and C increased when 300 mM NaCl was added to medium. The in vitro antagonism assays showed that both isolates had inhibitory effect against Rhizoctonia solani AG-2, Fusarium solani and Phytophthora drechsleri. In dual culture, Streptomyces isolate C inhibited mycelial growth of R. solani, F. solani and P. drechsleri 45%, 53% and 26%, respectively. NaCl treatment of medium increased biocontrol activity of soluble and volatile compounds of isolate C and S2. After salt treatment, growth inhibition of R. solani, F. solani and P. drechsleri by isolate C increased up to 59%, 70% and 79%, respectively. To elucidate the mode of antagonism, protease, chitinase, beta glucanase, cellulase, lipase and α-amylase activity and siderophore and salicylic acid (SA) production were evaluated. Both isolates showed protease, chitinase and α-amylase activity. Also, biosynthesis of siderophore was detectable for both isolates. Production of siderophore and activity of protease and α-amylase increased after adding salt for both isolates. In contrast, chitinase activity decreased significantly. Production of SA, beta glucanase and lipase by isolate S2 and biosynthesis of cellulase by isolate C were observed in presence and absence of NaCl. Soil treatment with Streptomyces isolate C inhibited root rot of sugar beet caused by P. drechsleri, R. solani and F. solani. Results of this study showed that these two Streptomyces isolates had potential to be utilized as biocontrol agent against fungal diseases especially in saline soils.  相似文献   
12.
Anthrax lethal toxin (LT), a major virulence determinant of anthrax disease, induces vascular collapse in mice and rats. LT activates the Nlrp1 inflammasome in macrophages and dendritic cells, resulting in caspase-1 activation, IL-1β and IL-18 maturation and a rapid cell death (pyroptosis). This review presents the current understanding of LT-induced activation of Nlrp1 in cells and its consequences for toxin-mediated effects in rodent toxin and spore challenge models.  相似文献   
13.
14.
15.
Anthrax is a highly lethal disease caused by the Gram-(+) bacteria Bacillus anthracis. Edema toxin (ET) is a major contributor to the pathogenesis of disease in humans exposed to B. anthracis. ET is a bipartite toxin composed of two proteins secreted by the vegetative bacteria, edema factor (EF) and protective antigen (PA). Our work towards identifying a small molecule inhibitor of anthrax edema factor is the subject of this letter. First we demonstrate that the small molecule probe 5′-Fluorosulfonylbenzoyl 5′-adenosine (FSBA) reacts irreversibly with EF and blocks enzymatic activity. We then show that the adenosine portion of FSBA can be replaced to provide more drug-like molecules which are up to 1000-fold more potent against EF relative to FSBA, display low cross reactivity when tested against a panel of kinases, and are nanomolar inhibitors of EF in a cell-based assay of cAMP production.  相似文献   
16.
17.
Anthrax lethal toxin (LT) and edema toxin (ET) are the major virulence factors of anthrax and can replicate the lethality and symptoms associated with the disease. This review provides an overview of our current understanding of anthrax toxin effects in animal models and the cytotoxicity (necrosis and apoptosis) induced by LT in different cells. A brief reexamination of early historic findings on toxin in vivo effects in the context of our current knowledge is also presented.  相似文献   
18.
19.
Heterogeneous nuclear ribonucleoprotein D-like protein (JKTBP) 1 was implicated in cap-independent translation by binding to the internal ribosome entry site in the 5′ untranslated region (UTR) of NF-κB-repressing factor (NRF). Two different NRF mRNAs have been identified so far, both sharing the common 5′ internal ribosome entry site but having different length of 3′ UTRs. Here, we used a series of DNA and RNA luciferase reporter constructs comprising 5′, 3′ or both NRF UTRs to study the effect of JKTBP1 on translation of NRF mRNA variants. The results indicate that JKTBP1 regulates the level of NRF protein expression by binding to both NRF 5′ and 3′ UTRs. Using successive deletion and point mutations as well as RNA binding studies, we define two distinct JKTBP1 binding elements in NRF 5′ and 3′ UTRs. Furthermore, JKTBP1 requires two distinct RNA binding domains to interact with NRF UTRs and a short C-terminal region for its effect on NRF expression. Together, our study shows that JKTBP1 contributes to NRF protein expression via two disparate mechanisms: mRNA stabilization and cap-independent translation. By binding to 5′ UTR, JKTBP1 increases the internal translation initiation in both NRF mRNA variants, whereas its binding to 3′ UTR elevated primarily the stability of the major NRF mRNA. Thus, JKTBP1 is a key regulatory factor linking two pivotal control mechanisms of NRF gene expression: the cap-independent translation initiation and mRNA stabilization.  相似文献   
20.
Bacterial lipoproteins play a crucial role in virulence in some gram-positive bacteria. However, the role of lipoprotein biosynthesis in Bacillus anthracis is unknown. We created a B. anthracis mutant strain altered in lipoproteins by deleting the lgt gene encoding the enzyme prolipoprotein diacylglyceryl transferase, which attaches the lipid anchor to prolipoproteins. (14)C-palmitate labelling confirmed that the mutant strain lacked lipoproteins, and hydrocarbon partitioning showed it to have decreased surface hydrophobicity. The anthrax toxin proteins were secreted from the mutant strain at nearly the same levels as from the wild-type strain. The TLR2-dependent TNF-α response of macrophages to heat-killed lgt mutant bacteria was reduced. Spores of the lgt mutant germinated inefficiently in vitro and in mouse skin. As a result, in a murine subcutaneous infection model, lgt mutant spores had markedly attenuated virulence. In contrast, vegetative cells of the lgt mutant were as virulent as those of the wild-type strain. Thus, lipoprotein biosynthesis in B. anthracis is required for full virulence in a murine infection model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号