首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   919篇
  免费   127篇
  国内免费   9篇
  2022年   4篇
  2021年   14篇
  2020年   7篇
  2019年   9篇
  2018年   12篇
  2017年   24篇
  2016年   24篇
  2015年   36篇
  2014年   56篇
  2013年   55篇
  2012年   60篇
  2011年   74篇
  2010年   41篇
  2009年   38篇
  2008年   44篇
  2007年   44篇
  2006年   41篇
  2005年   36篇
  2004年   25篇
  2003年   31篇
  2002年   41篇
  2001年   29篇
  2000年   25篇
  1999年   22篇
  1998年   14篇
  1997年   7篇
  1996年   14篇
  1995年   11篇
  1994年   14篇
  1993年   17篇
  1992年   12篇
  1991年   14篇
  1990年   15篇
  1989年   10篇
  1988年   15篇
  1987年   10篇
  1986年   6篇
  1985年   6篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1980年   5篇
  1979年   6篇
  1977年   10篇
  1976年   8篇
  1975年   5篇
  1974年   7篇
  1972年   3篇
  1971年   4篇
  1969年   3篇
排序方式: 共有1055条查询结果,搜索用时 18 毫秒
151.
Controlled, transient cytokine production by monocytes depends heavily upon rapid mRNA degradation, conferred by 3' untranslated region-localized AU-rich elements (AREs) that associate with RNA-binding proteins. The ARE-binding protein AUF1 forms a complex with cap-dependent translation initiation factors and heat shock proteins to attract the mRNA degradation machinery. We refer to this protein assembly as the AUF1- and signal transduction-regulated complex, ASTRC. Rapid degradation of ARE-bearing mRNAs (ARE-mRNAs) requires ubiquitination of AUF1 and its destruction by proteasomes. Activation of monocytes by adhesion to capillary endothelium at sites of tissue damage and subsequent proinflammatory cytokine induction are prominent features of inflammation, and ARE-mRNA stabilization plays a critical role in the induction process. Here, we demonstrate activation-induced subunit rearrangements within ASTRC and identify chaperone Hsp27 as a novel subunit that is itself an ARE-binding protein essential for rapid ARE-mRNA degradation. As Hsp27 has well-characterized roles in protein ubiquitination as well as in adhesion-induced cytoskeletal remodeling and cell motility, its association with ASTRC may provide a sensing mechanism to couple proinflammatory cytokine induction with monocyte adhesion and motility.  相似文献   
152.
153.
α-Glucans in general, including starch, glycogen and their derived oligosaccharides are processed by a host of more or less closely related enzymes that represent wide diversity in structure, mechanism, specificity and biological role. Sophisticated three-dimensional structures continue to emerge hand-in-hand with the gaining of novel insight in modes of action. We are witnessing the “test of time” blending with remaining questions and new relationships for these enzymes. Information from both within and outside of ALAMY_3 Symposium will provide examples on what the family contains and outline some future directions. In 2007 a quantum leap crowned the structural biology by the glucansucrase crystal structure. This initiates the disclosure of the mystery on the organisation of the multidomain structure and the “robotics mechanism” of this group of enzymes. The central issue on architecture and domain interplay in multidomain enzymes is also relevant in connection with the recent focus on carbohydrate-binding domains as well as on surface binding sites and their long underrated potential. Other questions include, how different or similar are glycoside hydrolase families 13 and 31 and is the lid finally lifted off the disguise of the starch lyase, also belonging to family 31? Is family 57 holding back secret specificities? Will the different families be sporting new “eccentric” functions, are there new families out there, and why are crystal structures of “simple” enzymes still missing? Indeed new understanding and discovery of biological roles continuously emphasize value of the collections of enzyme models, sequences, and evolutionary trees which will also be enabling advancement in design for useful and novel applications.  相似文献   
154.
155.
DNA looping is important for gene repression and activation in Escherichia coli and is necessary for some kinds of gene regulation and recombination in eukaryotes. We are interested in sequence-nonspecific architectural DNA-binding proteins that alter the apparent flexibility of DNA by producing transient bends or kinks in DNA. The bacterial heat unstable (HU) and eukaryotic high-mobility group B (HMGB) proteins fall into this category. We have exploited a sensitive genetic assay of DNA looping in living E. coli cells to explore the extent to which HMGB proteins and derivatives can complement a DNA looping defect in E. coli lacking HU protein. Here, we show that derivatives of the yeast HMGB protein Nhp6A rescue DNA looping in E. coli lacking HU, in some cases facilitating looping to a greater extent than is observed in E. coli expressing normal levels of HU protein. Nhp6A-induced changes in the DNA length-dependence of repression efficiency suggest that Nhp6A alters DNA twist in vivo. In contrast, human HMGB2-box A derivatives did not rescue looping.  相似文献   
156.
Chitin has been extracted from six different local sources in Egypt. The obtained chitin was converted into the more useful soluble chitosan by steeping into solutions of NaOH of various concentrations and for extended periods of time, then the alkali chitin was heated in an autoclave which dramatically reduced the time of deacetylation. Chitin from squid pens did not require steeping in sodium hydroxide solution and showed much higher reactivity towards deacetylation in the autoclave that even after 15 min of heating a degree of deacetylation of 90% was achieved. The obtained chitin and chitosan were characterized by spectral analysis, X-ray diffraction and thermo gravimetric analysis.  相似文献   
157.
158.
E2F-1 is essential for normal epidermal wound repair.   总被引:2,自引:0,他引:2  
E2F factors are involved in proliferation and apoptosis. To understand the role of E2F-1 in the epidermis, we screened wild type and E2F-1(-/-) keratinocyte mRNA for genes differentially expressed in the two cell populations. We demonstrate the reduced expression of integrins alpha(5), alpha(6), beta(1), and beta(4) in E2F-1(-/-) keratinocytes associated with reduced activation of Jun terminal kinase and Erk upon integrin stimulation. As a consequence of altered integrin expression and function, E2F-1(-/-) keratinocytes also show impaired migration, adhesion to extracellular matrix proteins, and a blunted chemotactic response to transforming growth factor-gamma1. E2F-1(-/-) keratinocytes, but not dermal fibroblasts, exhibit altered patterns of proliferation, including significant delays in transit through both G(1) and S phases of the cell cycle. Recognizing that proliferation and migration are key for proper wound healing in vivo, we postulated that E2F-1(-/-) mice may exhibit abnormal epidermal repair upon injury. Consistent with our hypothesis, E2F-1(-/-) mice exhibited impaired cutaneous wound healing. This defect is associated with substantially reduced local inflammatory responses and rates of re-epithelialization. Thus, we demonstrate that E2F-1 is indispensable for a hitherto unidentified cell type-specific and unique role in keratinocyte proliferation, adhesion, and migration as well as in proper wound repair and epidermal regeneration in vivo.  相似文献   
159.
Globodera rostochiensis and G. pallida responded similarly to hatch stimulation by potato root leachate, but proportionally more second-stage juveniles (J2s) of G. rostochiensis hatched than of G. pallida in response to picrolonic acid, sodium thiocyanate, alpha-solanine, and alpha-chaconine. Fractionation of the potato root leachate identified hatching factors with species-selective (active toward both species but stimulating greater hatch of one species than the other), -specific (active toward only one species), and -neutral (equally active toward both species) activities. In a comparison of two populations of each of the two potato cyst nematode (PCN) species, however, greater similarity in response to the individual hatching factors was observed among populations of different species produced under the same conditions than among different populations of the same PCN species. Smaller numbers of species-specific and species-selective hatching factor stimulants and hatching inhibitors than of hatching factors were resolved. In a study to determine whether the different hatching responses of the two species to the same root leachate were associated with different ratios of species-selective and species-specific hatching factors, G. rostochiensis pathotype Ro1 exhibited greater hatch than did G. pallida pathotype Pa2/3 in response to leachate from older plants (more than 38 days old), while G. pallida exhibited greater hatch in response to leachate from younger plants (less than 38 days old); the response of G. pallida pathotype Pal with respect to plant age was intermediate between the other two populations. Combined molecular exclusion-ion exchange chromatography of the root leachates from plants of different ages revealed an increase in the proportion of G. rostochiensis-specific and -selective hatching factors as the plants aged.  相似文献   
160.
Assuming that differences or similarities in morphology among congeneric parasite species living in the same habitat are not a random pattern, several hypotheses explaining morphological differences were tested: (i) reproductive isolation, (ii) niche restriction resulting from competition, and (iii) niche specialization. Congeneric monogenean (platyhelminth) ectoparasites parasitizing the gills of one host species were used as an ecological model. Morphometric distances of the attachment organ and morphometric distances of the copulatory organ between species pairs were calculated, Levin's niche size and Renkonen niche overlap indices were applied. Our results support the prediction that the function of niche segregation is to achieve reproductive isolation of related species in order to prevent hybridization (reinforcement of reproductive barriers). Parasite species living in the same niche differ greatly in the size of copulatory organ. Moreover, species coexistence is facilitated by an increase in morphometric distances of copulatory organ and niche centre distances. Our results also show that species living in overlapping niches have similar attachment organs, which supports the prediction that morphologically similar species have the same ecological requirements within one host and suggests small effects of interspecific competition for the evolution of morphological diversity of attachment organs. Specialist adaptations also seem to facilitate species coexistence and affect the niche distribution within host species. Parasite species that can colonize more than one host species, i.e. generalists, occupy more distant niches within host species than strictly host-specific parasites. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76, 125–135.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号