首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   119篇
  2022年   3篇
  2021年   11篇
  2020年   6篇
  2019年   12篇
  2018年   19篇
  2017年   7篇
  2016年   13篇
  2015年   22篇
  2014年   32篇
  2013年   33篇
  2012年   43篇
  2011年   44篇
  2010年   20篇
  2009年   15篇
  2008年   31篇
  2007年   31篇
  2006年   30篇
  2005年   24篇
  2004年   29篇
  2003年   24篇
  2002年   16篇
  2001年   20篇
  2000年   22篇
  1999年   22篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   8篇
  1994年   6篇
  1993年   3篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   9篇
  1988年   6篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   8篇
  1983年   7篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1974年   3篇
  1973年   4篇
  1972年   7篇
  1967年   5篇
排序方式: 共有717条查询结果,搜索用时 281 毫秒
41.
We have recently demonstrated that a 37-amino acid peptide corresponding to the cytoplasmic domain of the natriuretic peptide receptor C (NPR-C) inhibited adenylyl cyclase activity via pertussis toxin (PT)-sensitive G(i) protein. In the present studies, we have used seven different peptide fragments of the cytoplasmic domain of the NPR-C receptor with complete, partial, or no G(i) activator sequence to examine their effects on adenylyl cyclase activity. The peptides used were KKYRITIERRNH (peptide 1), RRNHQEESNIGK (peptide 2), HRELREDSIRSH (peptide 3), RRNHQEESNIGKHRELR (peptide 4), QEESNIGK (peptide X), ITIERRNH (peptide Y), and ITIYKKRRNHRE (peptide Z). Peptides 1, 3, and 4 have complete G(i) activator sequences, whereas peptides 2 and Y have partial G(i) activator sequences with truncated carboxyl or amino terminus, respectively. Peptide X has no structural specificity, whereas peptide Z is the scrambled peptide control for peptide 1. Peptides 1, 3, and 4 inhibited adenylyl cyclase activity in a concentration-dependent manner with apparent K(i) between 0.1 and 1 nm; however, peptide 2 inhibited adenylyl cyclase activity with a higher K(i) of about 10 nm, and peptides X, Y, and Z were unable to inhibit adenylyl cyclase activity. The maximal inhibitions observed were between 30 and 40%. The inhibition of adenylyl cyclase activity by peptides 1-4 was absolutely dependent on the presence of guanine nucleotides and was completely attenuated by PT treatment. In addition, the stimulatory effects of isoproterenol, glucagon, and forskolin on adenylyl cyclase activity were inhibited to different degrees by these peptides. These results suggest that the small peptide fragments of the cytoplasmic domain of the NPR-C receptor containing 12 or 17 amino acids were sufficient to inhibit adenylyl cyclase activity through a PT-sensitive G(i) protein. The peptides having complete structural specificity of G(i) activator sequences at both amino and carboxyl termini were more potent to inhibit adenylyl cyclase activity as compared with the peptides having a truncated carboxyl terminus, whereas the truncation of the amino-terminal motif completely attenuates adenylyl cyclase inhibition.  相似文献   
42.
Sphingolipids (SLs) are plasma membrane constituents in eukaryotic cells which play important roles in a wide variety of cellular functions. However, little is known about the mechanisms of their internalization from the plasma membrane or subsequent intracellular targeting. We have begun to study these issues in human skin fibroblasts using fluorescent SL analogues. Using selective endocytic inhibitors and dominant negative constructs of dynamin and epidermal growth factor receptor pathway substrate clone 15, we found that analogues of lactosylceramide and globoside were internalized almost exclusively by a clathrin-independent ("caveolar-like") mechanism, whereas an analogue of sphingomyelin was taken up approximately equally by clathrin-dependent and -independent pathways. We also showed that the Golgi targeting of SL analogues internalized via the caveolar-like pathway was selectively perturbed by elevated intracellular cholesterol, demonstrating the existence of two discrete Golgi targeting pathways. Studies using SL-binding toxins internalized via clathrin-dependent or -independent mechanisms confirmed that endogenous SLs follow the same two pathways. These findings (a) provide a direct demonstration of differential SLs sorting into early endosomes in living cells, (b) provide a "vital marker" for endosomes derived from caveolar-like endocytosis, and (c) identify two independent pathways for lipid transport from the plasma membrane to the Golgi apparatus in human skin fibroblasts.  相似文献   
43.
Degradation of the mammalian cyclin-dependent kinase (CDK) inhibitor p27 is required for the cellular transition from quiescence to the proliferative state. The ubiquitination and subsequent degradation of p27 depend on its phosphorylation by cyclin-CDK complexes. However, the ubiquitin-protein ligase necessary for p27 ubiquitination has not been identified. Here we show that the F-box protein SKP2 specifically recognizes p27 in a phosphorylation-dependent manner that is characteristic of an F-box-protein-substrate interaction. Furthermore, both in vivo and in vitro, SKP2 is a rate-limiting component of the machinery that ubiquitinates and degrades phosphorylated p27. Thus, p27 degradation is subject to dual control by the accumulation of both SKP2 and cyclins following mitogenic stimulation.  相似文献   
44.
45.
The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and gamma-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.  相似文献   
46.
A series of novel polyhalogenated benzimidazoles have been prepared by exhaustive bromination of a variety of 2-substituted benzimidazoles. The efficacy of both new compounds and a number of their previously described cognates as inhibitors of casein kinases CK1, CK2 and G-CK was investigated. The type of N-1 alkyl substituent as well as introduction of a polyfluoroalkyl moiety at position 2 did not markedly influence the inhibitory efficacy toward CK2 of the respective 4,5,6,7-tetrabromobenzimidazole derivatives which conversely were almost ineffective toward CK1 and G-CK. However, 4,5,6,7-tetrabromobenzimidazoles substituted at position 2 with either chlorine, bromine or sulfur atom, while manifesting a still considerable inhibitory activity against CK2 (IC(50) in the 0.49-0.93 microM range) proved to be potentially powerful inhibitors also against CK1 (IC(50) in the 18.4-2.2 microM range).  相似文献   
47.
We showed previously that the intracellular transport of sphingolipids (SLs) is altered in SL storage disease fibroblasts, due in part to the secondary accumulation of free cholesterol. In the present study we examined the mechanism of cholesterol elevation in normal human skin fibroblasts induced by treatment with SLs. When cells were incubated with various natural SLs for 44 h, cholesterol levels increased 25-35%, and cholesterol esterification was reduced. Catabolism of the exogenous SLs was not required for elevation of cholesterol because (i) a non-hydrolyzable and a degradable SL analog elevated cellular cholesterol to similar extents, and (ii) incubation of cells with various SL catabolites, including ceramide, had no effect on cholesterol levels. Elevated cholesterol was derived primarily from low density lipoproteins (LDL) and resulted from up-regulation of LDL receptors induced by cleavage of the sterol regulatory element-binding protein-1. Upon SL treatment, cholesterol accumulated with exogenous SLs in late endosomes and lysosomes. These results suggest a model in which excess SLs present in endocytic compartments serve as a "molecular trap" for cholesterol, leading to a reduction in cholesterol at the endoplasmic reticulum, induction of sterol regulatory element-binding protein-1 cleavage, and up-regulation of LDL receptors.  相似文献   
48.
49.
Three different binding sites of Cks1 are required for p27-ubiquitin ligation   总被引:12,自引:0,他引:12  
Previous studies have shown that the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) is targeted for degradation by an SCF(Skp2) ubiquitin ligase complex and that this process requires Cks1, a member of the highly conserved Suc1/Cks family of cell cycle regulatory proteins. All proteins of this family have Cdk-binding and anion-binding sites, but only mammalian Cks1 binds to Skp2 and promotes the association of Skp2 with p27 phosphorylated on Thr-187. The molecular mechanisms by which Cks1 promotes the interaction of the Skp2 ubiquitin ligase subunit to p27 remained obscure. Here we show that the Skp2-binding site of Cks1 is located on a region including the alpha2- and alpha1-helices and their immediate vicinity, well separated from the other two binding sites. All three binding sites of Cks1 are required for p27-ubiquitin ligation and for the association of Skp2 with Cdk-bound, Thr-187-phosphorylated p27. Cks1 and Skp2 mutually promote the binding of each other to a peptide similar to the 19 C-terminal amino acids of p27 containing phosphorylated Thr-187. This latter process requires the Skp2- and anion-binding sites of Cks1, but not its Cdk-binding site. It is proposed that the Skp2-Cks1 complex binds initially to the C-terminal region of phosphorylated p27 in a process promoted by the anion-binding site of Cks1. The interaction of Skp2 with the substrate is further strengthened by the association of the Cdk-binding site of Cks1 with Cdk2/cyclin E, to which phosphorylated p27 is bound.  相似文献   
50.
DNA from therapy-related acute leukemia/myelodysplastic syndrome cases (tAL/MDS) from the GIMEMA [Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto] Archive was examined for the microsatellite instability (MSI(+)) phenotype that is diagnostic for defective DNA mismatch repair. More than 60% (16/25) of tAL/MDS cases were MSI(+) in contrast to <4% (0/28) of de novo cases. hMLH1 gene silencing was rare and evidence of promoter methylation was found in less than one-third of the MSI(+) cases. Among the GIMEMA patients who had been treated for breast cancer there was an apparent trend towards early onset primary breast disease. This suggests that there might be common predisposing factors for breast cancer and tAL/MDS. There were also three examples of mutations in the MRE11 gene among the 25 tAL/MDS cases suggesting that defective recombinational DNA repair may promote the development of secondary malignancy. MSI(+) tAL/MDS was significantly associated with previous chemotherapy and the frequency of MSI(+) among radiotherapy patients was considerably lower. In view of the established relationship between drug resistance and mismatch repair defects, we suggest that selection for therapeutic drug resistance may contribute to the incidence of MSI(+) tAL/MDS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号