首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   119篇
  2022年   3篇
  2021年   11篇
  2020年   6篇
  2019年   12篇
  2018年   19篇
  2017年   7篇
  2016年   13篇
  2015年   22篇
  2014年   32篇
  2013年   33篇
  2012年   43篇
  2011年   44篇
  2010年   20篇
  2009年   15篇
  2008年   31篇
  2007年   31篇
  2006年   30篇
  2005年   24篇
  2004年   29篇
  2003年   24篇
  2002年   16篇
  2001年   20篇
  2000年   22篇
  1999年   22篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   8篇
  1994年   6篇
  1993年   3篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   9篇
  1988年   6篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   8篇
  1983年   7篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1974年   3篇
  1973年   4篇
  1972年   7篇
  1967年   5篇
排序方式: 共有717条查询结果,搜索用时 93 毫秒
31.
32.
Introduction: The cellular response to infection by bacterial pathogens involves a complex and highly regulated series of pathways that carry messages to various parts of the cell. These messages are transferred using post-translational modifications including phosphorylation by kinases. Understanding the host’s signaling pathways is valuable in identifying potential treatment targets, but the bacterial signaling pathways and host-pathogen crosstalk are equally important to the development of therapeutics.

Areas covered: This review summarizes some of the recent findings related to the bacterial phosphoproteome and especially serine/threonine/tyrosine sites, including methods and considerations for identifying novel phosphosites. We also consider the bioinformatics tools that have been developed to sift through the large volume of data in these studies and connect them to biologically relevant knowledge about pathways and function. Literature databases used include PubMed and Google Scholar from April 2018 to December 2018.

Expert opinion: While the field has developed significantly in the past decade of research, high-quality experimental sequence data remains the limiting factor to future research into bacterial phosphoproteomics. As more proteomes are explored, it will be easier to tailor tools and techniques to prokaryotes. It will be necessary to consider the phosphoproteome in the broader biological context, through interdisciplinary collaborations.  相似文献   

33.
DNA metabarcoding can contribute to improving cost‐effectiveness and accuracy of biological assessments of aquatic ecosystems, but significant optimization and standardization efforts are still required to mainstream its application into biomonitoring programmes. In assessments based on freshwater macroinvertebrates, a key challenge is that DNA is often extracted from cleaned, sorted and homogenized bulk samples, which is time‐consuming and may be incompatible with sample preservation requirements of regulatory agencies. Here, we optimize and evaluate metabarcoding procedures based on DNA recovered from 96% ethanol used to preserve field samples and thus including potential PCR inhibitors and nontarget organisms. We sampled macroinvertebrates at five sites and subsampled the preservative ethanol at 1 to 14 days thereafter. DNA was extracted using column‐based enzymatic (TISSUE) or mechanic (SOIL) protocols, or with a new magnetic‐based enzymatic protocol (BEAD), and a 313‐bp COI fragment was amplified. Metabarcoding detected at least 200 macroinvertebrate taxa, including most taxa detected through morphology and for which there was a reference barcode. Better results were obtained with BEAD than SOIL or TISSUE, and with subsamples taken 7–14 than 1–7 days after sampling, in terms of DNA concentration and integrity, taxa diversity and matching between metabarcoding and morphology. Most variation in community composition was explained by differences among sites, with small but significant contributions of subsampling day and extraction method, and negligible contributions of extraction and PCR replication. Our methods enhance reliability of preservative ethanol as a potential source of DNA for macroinvertebrate metabarcoding, with a strong potential application in freshwater biomonitoring.  相似文献   
34.
The mechanisms that regulate skin pigmentation have been the subject of intense research in recent decades. In contrast with melanin biogenesis and transport within melanocytes, little is known about how melanin is transferred and processed within keratinocytes. Several models have been proposed for how melanin is transferred, with strong evidence supporting coupled exo/endocytosis. Recently, two reports suggest that upon internalization, melanin is stored within keratinocytes in an arrested compartment, allowing the pigment to persist for long periods. In this commentary, we identify a striking parallelism between melanin processing within keratinocytes and the host‐pathogen interaction with Plasmodium, opening new avenues to understand the complex molecular mechanisms that ensure skin pigmentation and photoprotection.   相似文献   
35.
36.
Measures of energy expenditure can be used to inform animal conservation and management, but methods for measuring the energy expenditure of free‐ranging animals have a variety of limitations. Advancements in biologging technologies have enabled the use of dynamic body acceleration derived from accelerometers as a proxy for energy expenditure. Although dynamic body acceleration has been shown to strongly correlate with oxygen consumption in captive animals, it has been validated in only a few studies on free‐ranging animals. Here, we use relationships between oxygen consumption and overall dynamic body acceleration in resting and walking polar bears Ursus maritimus and published values for the costs of swimming in polar bears to estimate the total energy expenditure of 6 free‐ranging polar bears that were primarily using the sea ice of the Beaufort Sea. Energetic models based on accelerometry were compared to models of energy expenditure on the same individuals derived from doubly labeled water methods. Accelerometer‐based estimates of energy expenditure on average predicted total energy expenditure to be 30% less than estimates derived from doubly labeled water. Nevertheless, accelerometer‐based measures of energy expenditure strongly correlated (r2 = 0.70) with measures derived from doubly labeled water. Our findings highlight the strengths and limitations in dynamic body acceleration as a measure of total energy expenditure while also further supporting its use as a proxy for instantaneous, detailed energy expenditure in free‐ranging animals.  相似文献   
37.
Efficient regeneration of NAD(P)+ cofactors is essential for large-scale application of alcohol dehydrogenases due to the high cost and chemical instability of these cofactors. NAD(P)+ can be regenerated effectively using NAD(P)H oxidases (NOXs) that require molecular oxygen as a cosubstrate. In large-scale biocatalytic processes, agitation and aeration are needed for sufficient oxygen transfer into the liquid phase, both of which have been shown to significantly increase the rate of enzyme deactivation. As such, the aim of this study was to identify the existence of a correlation between enzyme stability and gas–liquid interfacial area inside the bioreactor. This was done by measuring gas–liquid interfacial areas inside an aerated stirred reactor, using an in situ optical probe, and simultaneously measuring the kinetic stability of NOXs. Following enzyme incubation at various power inputs and gas-phase compositions, the residual activity was assessed and video samples were analyzed through an image processing algorithm. Enzyme deactivation was found to be proportional to an increase in interfacial area up to a certain limit, where power input appears to have a higher impact. Furthermore, the presence of oxygen increased enzyme deactivation rates at low interfacial areas. The areas were validated with defined glass beads and found to be in the range of those in large-scale bioreactors. Finally, a correlation between the enzyme half-life and specific interfacial area was obtained. Therefore, we conclude that the method developed in this contribution can help to predict the behavior of biocatalyst stability under industrially relevant conditions, concerning specific gas–liquid interfacial areas.  相似文献   
38.
39.
40.
We have investigated the effects of arachidonic and palmitic acids in isolated rat liver mitochondria and in rat hepatoma MH1C1 cells. We show that both compounds induce the mitochondrial permeability transition (PT). At variance from palmitic acid, however, arachidonic acid causes a PT at concentrations that do not cause PT-independent depolarization or respiratory inhibition, suggesting a specific effect on the PT pore. When added to intact MH1C1 cells, arachidonic acid but not palmitic acid caused a mitochondrial PT in situ that was accompanied by cytochrome c release and rapidly followed by cell death. All these effects of arachidonic acid could be prevented by cyclosporin A but not by the phospholipase A(2) inhibitor aristolochic acid. In contrast, tumor necrosis factor alpha caused phospholipid hydrolysis, induction of the PT, cytochrome c release, and cell death that could be inhibited by both cyclosporin A and aristolochic acid. These findings suggest that arachidonic acid produced by cytosolic phospholipase A(2) may be a mediator of tumor necrosis factor alpha cytotoxicity in situ through induction of the mitochondrial PT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号