首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1595篇
  免费   181篇
  2023年   11篇
  2022年   11篇
  2021年   33篇
  2020年   23篇
  2019年   23篇
  2018年   29篇
  2017年   32篇
  2016年   61篇
  2015年   97篇
  2014年   114篇
  2013年   111篇
  2012年   146篇
  2011年   115篇
  2010年   81篇
  2009年   61篇
  2008年   99篇
  2007年   99篇
  2006年   82篇
  2005年   69篇
  2004年   69篇
  2003年   47篇
  2002年   67篇
  2001年   24篇
  2000年   10篇
  1999年   21篇
  1998年   14篇
  1997年   19篇
  1996年   13篇
  1995年   21篇
  1994年   20篇
  1993年   16篇
  1992年   21篇
  1991年   14篇
  1990年   9篇
  1989年   11篇
  1988年   18篇
  1987年   5篇
  1985年   10篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1980年   7篇
  1979年   6篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
排序方式: 共有1776条查询结果,搜索用时 15 毫秒
991.
The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association with hyperplastic and malignant proliferation of epithelial cells.Tissue and organ morphogenesis can be viewed as the result of interactions of various cell populations. One important type of intercellular interaction involved in the processes of tissue morphogenesis, morphogenetic movements of cells, and segregation of cell types, are adhesions mediated by cell adhesion molecules (Steinberg and Pool, 1982; Edelman, 1986; Cunningham, 1995; Takeichi, 1995; Gumbiner, 1996). Except for their direct mechanical role as interconnectors of cells and connectors of cells to substrates, cell adhesion molecules are also believed to be responsible for a variety of dynamic processes including cell locomotion, proliferation, and differentiation. There is also evidence that the adhesion systems within a cell may act as regulators of other cell adhesions, thereby offering a means of signaling that is relevant for rearrangements in cell or tissue organization (Edelman, 1993; Rosales et al., 1995; Gumbiner, 1996).In many tissues, a critical role in the maintenance of multicellular structures is assigned to cadherins, a family of Ca2+-dependent, homophilic cell–cell adhesion molecules (Takeichi, 1991, 1995; Gumbiner, 1996). In epithelia this critical role belongs to E-cadherin, which is crucial for the establishment and maintenance of epithelial cell polarity (McNeil et al., 1990; Näthke et al., 1993), morphogenesis of epithelial tissues (Wheelock and Jensen, 1992; Larue et al., 1996), and regulation of cell proliferation and programmed cell death (Hermiston and Gordon, 1995; Hermiston et al., 1996; Takahashi and Suzuki, 1996; Wilding et al., 1996; Zhu and Watt, 1996). Expression of different types of classic cadherin molecules (Nose et al., 1988; Friedlander et al., 1989; Daniel et al., 1995), and even quantitative differences in the levels of the same type of cadherin (Steinberg and Takeichi, 1994), may be responsible for segregation of cell types in epithelial tissues. The phenotype of epithelial cells may be modulated by expression of combinations of different types of cadherins (Marrs et al., 1995; Islam et al., 1996). However, cadherins represent only one of the intercellular adhesion systems that are present in epithelia, along with adhesion molecules of the immunoglobulin superfamily, such as carcinoembryonic antigen (Benchimol et al., 1989), and others. The actual contribution of Ca2+-independent nonjunctional adhesion molecules to the formation and maintenance of the epithelial tissue architecture and epithelial cell morphology is not clear.We have recently demonstrated that a 40-kD epithelial glycoprotein, which we have designated epithelial cell adhesion molecule (Ep-CAM)1 (Litvinov et al., 1994a ), may perform as a homophilic, Ca2+-independent intercellular adhesion molecule, capable of mediating cell aggregation, preventing cell scattering, and directing cell segregation. This type I transmembrane glycoprotein consists of two EGF-like domains followed by a cysteine-poor region, a transmembrane domain, and a short (26-amino acid) cytoplasmic tail, and is not structurally related to the four major types of CAMs, such as cadherins, integrins, selectins, and the immunoglobulin superfamily (for review see Litvinov, 1995). Ep-CAM demonstrates adhesion properties when introduced into cell systems that are deficient in intercellular adhesive interactions (Litvinov et al., 1994a ). However, the participation of the Ep-CAM molecule in supporting cell–cell interactions of epithelial cells was not evident (Litvinov et al., 1994b ).Most epithelial cell types coexpress E-cadherin (and sometimes other classic cadherins) and Ep-CAM (for review see Litvinov, 1995) during some stage of embryogenesis. In adult squamous epithelia, which are Ep-CAM negative, de novo expression of this molecule is associated with metaplastic or neoplastic changes. Thus, in ectocervical epithelia, expression of Ep-CAM occurs in early preneoplastic lesions (Litvinov et al., 1996); most squamous carcinomas of the head and neck region are Ep-CAM positive (Quak et al., 1990), and basal cell carcinomas are Ep-CAM positive in contrast to the normal epidermis (Tsubura et al., 1992).In many tumors that express Ep-CAM heterogeneously, an Ep-CAM–positive cell population may be found within an Ep-CAM–negative cell population, with both cell types expressing approximately equal levels of cadherins, as illustrated in Fig. Fig.11 A by a case of basal cell carcinoma. In glandular tissues such as gastric epithelium, which are low/ negative for Ep-CAM, expression of Ep-CAM is related to the development of early stages of intestinal metaplasia (our unpublished observation). Even in tissues with relatively high Ep-CAM expression, such as colon, the development of polyps is accompanied by an increase in Ep-CAM expression (Salem et al., 1993). In intestinal metaplasia one may observe Ep-CAM–positive cells bordering morphologically identical normal cells that are Ep-CAM–negative (as illustrated in Fig. Fig.11 B) Ep-CAM–positive cells bordering Ep-CAM–negative epithelial cells may also be found in some normal tissues such as hair follicles (Tsubura et al., 1992). Open in a separate windowFigure 1Examples of Ep-CAM expression by some cells within the E-cadherin–positive cell population. (A) Heterogeneous expression of Ep-CAM in a basal cell carcinoma, as detected by immunofluorescent staining with mAb 323/A3 to Ep-CAM (green fluorescence); the red fluorescence indicates the expression of E-cadherin (mAb HECD-1). (B) The de novo expression of Ep-CAM in gastric mucosa in relation to the development of intestinal metaplasia; immunohistochemical staining with mAb 323/A3. Note the bordering Ep-CAM–positive and –negative cells. Bars, 30 μM.From the examples presented, an increased or de novo expression of Ep-CAM is often observed in epithelial tissues in vivo. Expression of an additional molecule that may participate in cell adhesion in the context of other adhesion systems may have certain effects on the cell–cell interactions. Therefore, we have investigated whether the increased/de novo expression of Ep-CAM in epithelial cells (a) has any impact on interactions of positive cells with the parental Ep-CAM–negative cells, and (b) modulates in any way intercellular adhesive interactions of cells interconnected by E-cadherin, which is the major morphoregulatory molecule in epithelia.Here we demonstrate that expression of Ep-CAM by some cells in a mixed cell population expressing classical cadherins induces segregation of the Ep-CAM–positive cells from the parental cell population due to a negative effect on cadherin junctions caused by expression of Ep-CAM. The cadherin-modulating properties observed for Ep-CAM suggest a role for this molecule in the development of a proliferative and metaplastic cell phenotype, and probably in the development and progression of malignancies.  相似文献   
992.
Competition in natural populations of Daphnia   总被引:4,自引:0,他引:4  
Maarten Boersma 《Oecologia》1995,103(3):309-318
I investigated the competitive relationships between two species of Daphnia, D. galeata and D. cucullata, and their interspecific hybrid. The term hemispecific competition was introduced to describe competition between parental species and hybrids. In eutrophic Tjeukemeer both parental species were found to compete with the hybrid, whereas competition between D. galeata and D. cucullata seemed limited. Although the effect of competition on life history traits of daphnids may be profound, the influence of the competitors on the seasonal dynamics of the Daphnia species seems limited.  相似文献   
993.
The value of the diffusion coefficient for oxygen in muscle is uncertain. The diffusion coefficient is important because it is a determinant of the extracellular oxygen tension at which the core of muscle fibers becomes anoxic (Po(2crit)). Anoxic cores in muscle fibers impair muscular function and may limit adaptation of muscle cells to increased load and/or activity. We used Hill's diffusion equations to determine Krogh's diffusion coefficient (Dalpha) for oxygen in single skeletal muscle fibers from Xenopus laevis at 20 degrees C (n = 6) and in myocardial trabeculae from the rat at 37 degrees C (n = 9). The trabeculae were dissected from the right ventricular myocardium of control (n = 4) and monocrotaline-treated, pulmonary hypertensive rats (n = 5). The cross-sectional area of the preparations, the maximum rate of oxygen consumption (Vo(2 max)), and Po(2crit) were determined. Dalpha increased in the following order: Xenopus muscle fibers Dalpha = 1.23 nM.mm(2).mmHg(-1).s(-1) (SD 0.12), control rat trabeculae Dalpha = 2.29 nM.mm(2).mmHg(-1).s(-1) (SD 0.24) (P = 0.0012 vs. Xenopus), and hypertrophied rat trabeculae Dalpha = 6.0 nM.mm(2).mmHg(-1).s(-1) (SD 2.8) (P = 0.039 vs. control rat trabeculae). Dalpha increased with extracellular space in the preparation (Spearman's rank correlation coefficient = 0.92, P < 0.001). The values for Dalpha indicate that Xenopus muscle fibers cannot reach Vo(2 max) in vivo because Po(2crit) can be higher than arterial Po(2) and that hypertrophied rat cardiomyocytes can become hypoxic at the maximum heart rate.  相似文献   
994.
995.
To explore the feasibility of employing antibodies to obtain disease resistance against plant root pathogens, we have studied the expression of genes encoding antibodies in roots of transgenic plants. A model monoclonal antibody was used that binds to a fungal cutinase. Heavy and light chain cDNAs were amplified by PCR, fused to a signal sequence for secretion and cloned behind CaMV 35S and TR2 promoters in a single T-DNA. The chimeric genes were cloned both in tandem and in a divergent orientation. The roots of tobacco plants transformed with these constructs produced antibodies that were able to bind antigen in an ELISA. Immunoblotting showed assembly to a full-size antibody. In addition, a F(ab)2-like fragment was observed, which is probably formed by proteolytic processing. Both antibody species were properly targeted to the apoplast, but the full-size antibody was partially retained by the wall of suspension cells. The construct with divergent promoters showed a better performance than the construct with promoters in tandem. It directed the accumulation of functional antibodies to a maximum of 1.1% of total soluble protein, with half of the plants having levels higher than 0.35%. The high efficiency of this construct probably results from coordinated and balanced expression of light and heavy chain genes, as evidenced by RNA blot hybridization.  相似文献   
996.
Association mapping was used to investigate the genetic basis of variation within Brassica rapa, which is an important vegetable and oil crop. We analyzed the variation of phytate and phosphate levels in seeds and leaves and additional developmental and morphological traits in a set of diverse B. rapa accessions and tested association of these traits with AFLP markers. The analysis of population structure revealed four subgroups in the population. Trait values differed between these subgroups, thus defining associations between population structure and trait values, even for traits such as phytate and phosphate levels. Marker-trait associations were investigated both with and without taking population structure into account. One hundred and seventy markers were found to be associated with the observed traits without correction for population structure. Association analysis with correction for population structure led to the identification of 27 markers, 6 of which had known map positions; 3 of these were confirmed in additional QTL mapping studies.  相似文献   
997.
To follow stomatal responses to ozone (O3) in different Arabidopsis lines, we constructed a rapid-response O3 exposure/gas-exchange measurement device consisting of eight through-flow whole-rosette cuvettes. To separate rosette from roots and growth substrate, plant is grown through an agar-filled hole in a polished glass plate fixed on the pot. Following insertion of the plant, the plate forms air-tight bottom surface of the cuvette; thus the rosette is enclosed without touching it during any phase of the insertion of the plant to the cuvette. The device allows monitoring rapid responses in the stomatal function. For example, an acute exposure to 150 ppb O3 decreased stomatal conductance to 60–70% of its initial value within 9–12 min. Thereafter, the conductance regained its preexposure value within further 30–40 min in spite of the continuing O3 exposure. The transient decrease was absent in the abscisic acid-insensitive mutant abi2 defective in a class 2C protein phosphatase. This provides an in vivo confirmation that the early transient decrease in stomatal conductance is not a result of physical damage by the reactive oxygen species (ROS) formed from O3 breakdown but reflects the biological action of ROS, transduced through a signalling cascade. Thus, the apparatus will be helpful in specifying complex molecular and genetic interactions in rapid responses in guard cells in vivo.  相似文献   
998.
Theory suggests that gradual environmental change may erode the resilience of ecosystems and increase their susceptibility to critical transitions. This notion has received a lot of attention in ecology in recent decades. An important question receiving far less attention is whether ecosystems can cope with the rapid environmental changes currently imposed. The importance of this question was recently highlighted by model studies showing that elevated rates of change may trigger critical transitions, whereas slow environmental change would not. This paper aims to provide a mechanistic understanding of these rate‐induced critical transitions to facilitate identification of rate sensitive ecosystems. Analysis of rate sensitive ecological models is challenging, but we demonstrate how rate‐induced transitions in an elementary model can still be understood. Our analyses reveal that rate‐induced transitions 1) occur if the rate of environmental change is high compared to the response rate of ecosystems, 2) are driven by rates, rather than magnitudes, of change and 3) occur once a critical rate of change is exceeded. Disentangling rate‐induced transitions from classical transitions in observations would be challenging. However, common features of rate‐sensitive models suggest that ecosystems with coupled fast–slow dynamics, exhibiting repetitive catastrophic shifts or displaying periodic spatial patterns are more likely to be rate sensitive. Our findings are supported by experimental studies showing rate‐dependent outcomes. Rate sensitivity of models suggests that the common definition of ecological resilience is not suitable for a subset of real ecosystems and that formulating limits to magnitudes of change may not always safeguard against ecosystem degradation. Synthesis Understanding and predicting ecosystem response to environmental change is one of the key challenges in ecology. Model studies have suggested that slow, gradual environmental change beyond some critical threshold can trigger so‐called critical transitions and abrupt ecosystem degradation. An important question remains however whether ecosystems can cope with the ongoing rapid anthropogenic environmental changes to which they are currently imposed. In this study we demonstrate that in some ecological models elevated rates of change can trigger critical transitions even if slow environmental change of the same magnitude would not. Such rateinduced critical transitions in models suggest that concepts like resilience and planetary boundaries may not always be sufficient to explain and prevent ecosystem degradation.  相似文献   
999.
1000.
An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2D by 1α‐hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2D3. We show that myoblasts not only responded to 1,25(OH)2D3, but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α‐hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2D3. J. Cell. Physiol. 231: 2517–2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号