首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21950篇
  免费   1529篇
  国内免费   969篇
  2024年   35篇
  2023年   256篇
  2022年   367篇
  2021年   994篇
  2020年   675篇
  2019年   900篇
  2018年   889篇
  2017年   680篇
  2016年   959篇
  2015年   1338篇
  2014年   1515篇
  2013年   1754篇
  2012年   1950篇
  2011年   1821篇
  2010年   1018篇
  2009年   912篇
  2008年   1016篇
  2007年   933篇
  2006年   849篇
  2005年   727篇
  2004年   636篇
  2003年   528篇
  2002年   478篇
  2001年   314篇
  2000年   323篇
  1999年   287篇
  1998年   183篇
  1997年   163篇
  1996年   184篇
  1995年   168篇
  1994年   138篇
  1993年   106篇
  1992年   156篇
  1991年   150篇
  1990年   125篇
  1989年   99篇
  1988年   98篇
  1987年   101篇
  1986年   72篇
  1985年   89篇
  1984年   53篇
  1983年   54篇
  1982年   28篇
  1981年   28篇
  1980年   24篇
  1979年   35篇
  1978年   28篇
  1977年   21篇
  1975年   30篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Inter‐vascular transfer in rice (Oryza sativa) nodes is required for delivering mineral elements to developing tissues, which is mediated by various transporters in the nodes. However, the effect of these transporters on distribution of mineral elements in the nodes at a cellular level is still unknown. Here, we established a protocol for bioimaging of multiple elements at a cellular level in rice node by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS), and compared the mineral distribution profile between wild‐type (WT) rice and mutants. Both relative comparison of mineral distribution normalized by endogenous 13C and quantitative analysis using spiked standards combined with soft ablation gave valid results. Overall, macro‐nutrients such as K and Mg were accumulated more in the phloem region, while micro‐nutrients such as Fe and Zn were highly accumulated at the inter‐vascular tissues of the node. In mutants of nodal Zn transporter OsHMA2, Zn localization pattern in the node tissues did not differ from that of WT; however, Zn accumulation in the inter‐vascular tissues was lower in uppermost node I but higher in the third upper node III compared with the WT. In contrast, Si deposition in the mutants of three nodal Si transporters Lsi2, Lsi3 and Lsi6 showed different patterns, which are consistent with the localization of these transporters. This improved LA‐ICP‐MS analysis combined with functional characterization of transporters will provide further insight into mineral element distribution mechanisms in rice and other plant species.  相似文献   
992.
993.
994.
995.
Single‐domain antibodies (sdAbs) function like regular antibodies, however, consist of only one domain. Because of their low molecular weight, sdAbs have advantages with respect to production and delivery to their targets and for applications such as antibody drugs and biosensors. Thus, sdAbs with high thermal stability are required. In this work, we chose seven sdAbs, which have a wide range of melting temperature (Tm) values and known structures. We applied molecular dynamics (MD) simulations to estimate their relative stability and compared them with the experimental data. High‐temperature MD simulations at 400 K and 500 K were executed with simulations at 300 K as a control. The fraction of native atomic contacts, Q, measured for the 400 K simulations showed a fairly good correlation with the Tm values. Interestingly, when the residues were classified by their hydrophobicity and size, the Q values of hydrophilic residues exhibited an even better correlation, suggesting that stabilization is correlated with favorable interactions of hydrophilic residues. Measuring the Q value on a per‐residue level enabled us to identify residues that contribute significantly to the instability and thus demonstrating how our analysis can be used in a mutant case study.  相似文献   
996.
997.
(+)-N6-Hydroxyagelasine D, the enantiomer of the proposed structure of (?)-ageloxime D, as well as N6-hydroxyagelasine analogs were synthesized by selective N-7 alkylation of N6-[tert-butyl(dimethyl)silyloxy]-9-methyl-9H-purin-6-amine in order to install the terpenoid side chain, followed by fluoride mediated removal of the TBDMS-protecting group. N6-Hydroxyagelasine D and the analog carrying a geranylgeranyl side chain displayed profound antimicrobial activities against several pathogenic bacteria and protozoa and inhibited bacterial biofilm formation. However these compounds were also toxic towards mammalian fibroblast cells (MRC-5). The spectral data of N6-hydroxyagelasine D did not match those reported for ageloxime D before. Hence, a revised structure of ageloxime D was proposed. Basic hydrolysis of agelasine D gave (+)-N-[4-amino-6-(methylamino)pyrimidin-5-yl]-N-copalylformamide, a compound with spectral data in full agreement with those reported for (?)-ageloxime D.  相似文献   
998.

During the induction process of an in vitro callus culture of Argemone mexicana L. (Papaveraceae), the levels of two benzylisoquinoline alkaloids known as berberine and sanguinarine displayed opposing trends. While the berberine levels steadily decreased from the initial explant stage up to the early proliferation of unorganized parenchymatous cell masses, the sanguinarine content increased. Once the callus culture was established, sanguinarine was the primary alkaloid present and berberine could no longer be detected. However, upon shoot regeneration, the berberine accumulation recovered, but sanguinarine was found in the newly formed leafy tissue. After root formation, sanguinarine was relocated to this organ, whereas berberine was evenly distributed between both tissues. Explants from stem internodes did not form callus, and berberine—plus sanguinarine—containing axillary shoots emerged from lateral buds in the induction medium. In contrast to callus-derived shoots, no root formation was observed. Therefore, alkaloid synthesis in A. mexicana in vitro cultures is related to the level of tissue organization in different ways, and while berberine accumulation seems to require the presence of differentiated organs, this is not the case for sanguinarine. Moreover, leafy parts of rootless shoots acquired the capacity to accumulate sanguinarine, which is usually absent in aerial tissues of mature plants. However, when these shoots were rooted, sanguinarine was mainly located in the newly formed roots, while berberine was detected in the shoots at similar levels found in the roots.

  相似文献   
999.
KIAA1377 has been found to be linked with lymph node metastasis in esophageal squamous cell carcinoma (SCC) in our previous study; however, the regulation of KIAA1377 remains far from understood. Herein, to understand the regulation of KIAA1377 from the angle of microRNA (miRNA)–messenger RNA (mRNA) modulation in the setting of SCC cells, the basal level of KIAA1377 was determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis in KYSE‐150 and HeLa cells; biological roles of KIAA1377 contributing in the proliferation, migration, and invasion were evaluated using 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT), wound‐healing and Transwell assays, respectively, after KIAA1377 was knocked out mediated by the CRISPR‐Cas9 system. Bioinformatic prediction revealed that let‐7b‐5p was a putative miRNA regulating KIAA1377, which was ensuingly validated by the luciferase reporter assay; after which, variation of KIAA1377 expression was further verified by qRT‐PCR and western blot analysis. Moreover, the biological roles of let‐7b‐5p in proliferation, migration, and invasion of KYSE‐150 and HeLa cells were also evaluated. It was exhibited that KIAA1377 was able to promote the proliferation and motility of both KYSE‐150 and HeLa cells, which can be reverted by re‐expression of let‐7b‐5p. The luciferase reporter assay verified that let‐7b‐5p can diametrically target KIAA1377. Collectively, our data demonstrated that let‐7b‐5p can directly but negatively regulate KIAA1377 in SCC cell lines, Ecal109, and HeLa cells.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号