首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2003年   4篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1980年   2篇
  1963年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
31.
32.
The development of complete regional carbon (C) budgets for different biomes is an integral step in the effort to predict global response and potential feedbacks to a changing climate regime. Wetland and lake contributions to regional C cycling remain relatively uncertain despite recent research highlighting their importance. Using a combination of field surveys and tower‐based carbon dioxide (CO2) flux measurements, modeling, and published literature, we constructed a complete C budget for the Northern Highlands Lake District in northern Wisconsin/Michigan, a ~6400 km2 region rich in lakes and wetlands. This is one of the first regional C budgets to incorporate aquatic and terrestrial C cycling under the same framework. We divided the landscape into three major compartments (forests, wetlands, and surface waters) and quantified all major C fluxes into and out of those compartments, with a particular focus on atmospheric exchange but also including sedimentation in lakes and hydrologic fluxes. Landscape C storage was dominated by peat‐containing wetlands and lake sediments, which make up only 20% and 13% of the landscape area, respectively, but contain >80% of the total fixed C pool (ca. 400 Tg). We estimated a current regional C accumulation of 1.1±0.1 Tg yr?1, and the largest regional flux was forest net ecosystem exchange (NEE) into aggrading forests for a total of 1.0±0.1 Tg yr?1. Mean wetland NEE (0.12±0.06 Tg yr?1 into wetlands), lake CO2 emissions and riverine efflux (each ca. 0.03±0.01 Tg yr?1) were smaller but of consequence to the overall budget. Hydrologic transport from uplands/wetlands to surface waters within the region was an important vector of terrestrial C. Regional C fluxes and pools would be misrepresented without inclusion of surface waters and wetlands, and C budgets in heterogeneous landscapes open opportunities to examine the sensitivities of important fluxes to changes in climate and land use/land cover.  相似文献   
33.
34.
35.
Abstract: Identifying how habitat use is influenced by environmental heterogeneity at different scales is central to understanding ungulate population dynamics on complex landscapes. We used resource selection functions (RSF) to study summer habitat use in a reintroduced and expanding elk (Cervus elaphus nelsoni) population in the Chequamegon National Forest, Wisconsin, USA. Factors were examined that influenced where elk established home ranges and that influenced habitat use within established home ranges. We also determined grain sizes over which elk responded to environmental heterogeneity and the number of categories of habitat selection from low to high that the elk distinguished. At a large spatial extent, elk home-range establishment was largely explained by the spatial distribution of wolf (Canis lupus) territories. Forage abundance was also influential but was relatively more important at a small spatial extent when elk moved within established home ranges. Areas near roads were avoided when establishing a home-range, but areas near roads were selected for use within the established home range. Elk distinguished among 4 different categories of habitat selection when establishing and moving within home ranges. Spatial and temporal cross validation demonstrated that to improve the predictive strength of habitat models in areas of low inter-annual variability in the environment, it is better to follow more individuals across diverse environmental conditions than to follow the same individuals over a longer time period. Last, our results show that the effects of environmental variables on habitat use were scale-dependent and reemphasize the necessity of analyzing habitat use at multiple scales that are fit to address specific research questions.  相似文献   
36.

Background

Mesenchymal stromal cell (MSC)–based therapy has great potential to modulate chronic inflammation and enhance tissue regeneration. Crosstalk between MSC-lineage cells and polarized macrophages is critical for bone formation and remodeling in inflammatory bone diseases. However, the translational application of this interaction is limited by the short-term viability of MSCs after cell transplantation.

Methods

Three types of genetically modified (GM) MSCs were created: (1) luciferase-expressing reporter MSCs; (2) MSCs that secrete interleukin (IL)-4 either constitutively; and (3) MSCs that secrete IL-4 as a response to nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activation. Cells were injected into the murine distal femoral bone marrow cavity. MSC viability and bone formation were examined in vivo. Cytokine secretion was determined in a femoral explant organ culture model.

Results

The reporter MSCs survived up to 4 weeks post-implantation. No difference in the number of viable cells was found between high (2.5?×?106) and low (0.5?×?106) cell-injected groups. Injection of 2.5?×?106 reporter MSCs increased local bone mineral density at 4 weeks post-implantation. Injection of 0.5?×?106 constitutive IL-4 or NFκB-sensing IL-4–secreting MSCs increased bone mineral density at 2 weeks post-implantation. In the femoral explant organ culture model, LPS treatment induced IL-4 secretion in the NFκB-sensing IL-4–secreting MSC group and IL-10 secretion in all the femur samples. No significant differences in tumor necrosis factor (TNF)α and IL-1β secretion were observed between the MSC-transplanted and control groups in the explant culture.

Discussion

Transplanted GM MSCs demonstrated prolonged cell viability when transplanted to a compatible niche within the bone marrow cavity. GM IL-4–secreting MSCs may have great potential to enhance bone regeneration in disorders associated with chronic inflammation.  相似文献   
37.
38.
ABSTRACT Forest fire is often considered a primary threat to California spotted owls (Strix occidentalis occidentalis) because fire has the potential to rapidly alter owl habitat. We examined effects of fire on 7 radiomarked California spotted owls from 4 territories by quantifying use of habitat for nesting, roosting, and foraging according to severity of burn in and near a 610-km2fire in the southern Sierra Nevada, California, USA, 4 years after fire. Three nests were located in mixed-conifer forests, 2 in areas of moderate-severity burn, and one in an area of low-severity burn, and one nest was located in an unburned area of mixed-conifer-hardwood forest. For roosting during the breeding season, spotted owls selected low-severity burned forest and avoided moderate- and high-severity burned areas; unburned forest was used in proportion with availability. Within 1 km of the center of their foraging areas, spotted owls selected all severities of burned forest and avoided unburned forest. Beyond 1.5 km, there were no discernable differences in use patterns among burn severities. Most owls foraged in high-severity burned forest more than in all other burn categories; high-severity burned forests had greater basal area of snags and higher shrub and herbaceous cover, parameters thought to be associated with increased abundance or accessibility of prey. We recommend that burned forests within 1.5 km of nests or roosts of California spotted owls not be salvage-logged until long-term effects of fire on spotted owls and their prey are understood more fully.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号