首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   7篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   7篇
  2009年   10篇
  2008年   8篇
  2007年   4篇
  2006年   9篇
  2005年   10篇
  2002年   3篇
  2001年   3篇
  1997年   9篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   5篇
  1987年   4篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   8篇
  1977年   7篇
  1976年   6篇
  1975年   5篇
  1974年   6篇
  1973年   8篇
  1972年   3篇
  1968年   3篇
  1959年   3篇
  1958年   5篇
  1957年   9篇
  1956年   6篇
  1955年   5篇
  1954年   12篇
  1953年   19篇
  1952年   8篇
  1951年   7篇
  1950年   5篇
  1949年   11篇
  1948年   8篇
  1947年   3篇
  1946年   2篇
排序方式: 共有340条查询结果,搜索用时 656 毫秒
61.
62.
63.
64.
65.
66.
While it is generally recognized that noncontiguous (long‐distance) dispersal of small numbers of individuals is important for range expansion over large geographic areas, it is often assumed that colonization on more local scales proceeds by population expansion and diffusion dispersal (larger numbers of individuals colonizing adjacent sites). There are few empirical studies of dispersal modes at the front of expanding ranges, and very little information is available on dispersal dynamics at smaller geographic scales where we expect contiguous (diffusion) dispersal to be prevalent. We used highly polymorphic genetic markers to characterize dispersal modes at a local geographic scale for populations at the edge of the range of a newly invasive grass species (Brachypodium sylvaticum) that is undergoing rapid range expansion in the Pacific Northwest of North America. Comparisons of Bayesian clustering of populations, patterns of genetic diversity, and gametic disequilibrium indicate that new populations are colonized ahead of the invasion front by noncontiguous dispersal from source populations, with admixture occurring as populations age. This pattern of noncontiguous colonization was maintained even at a local scale. Absence of evidence for dispersal among adjacent pioneer sites at the edge of the expanding range of this species suggests that pioneer populations undergo an establishment phase during which they do not contribute emigrants for colonization of neighbouring sites. Our data indicate that dispersal modes change as the invasion matures: initial colonization processes appear to be dominated by noncontiguous dispersal from only a few sources, while contiguous dispersal may play a greater role once populations become established.  相似文献   
67.
68.
Salinity is one of the environmental factors that has a criticalinfluence on the germination of halophyte seeds and plant establishment.Salinity affects imbibition, germination and root elongation.However, the way in which NaCl exerts its influence on thesevital processes, whether it is through an osmotic effect ora specific ion toxicity, is still not resolved. Dimorphic seedsof the halophytesAtriplex prostrataandA. patulawere treatedwith various iso-osmotic solutions of NaCl and polyethyleneglycol (PEG). For each treatment, imbibition, germination rate,percent germination, germination recovery and nuclear area ofroot tip cells were compared. Higher concentrations of NaCl(-1.0 MPa) were more inhibitory to imbibition, germination andseedling root elongation than iso-osmotic PEG solutions. Allseeds recovered from a pre-treatment with -2.0 MPa NaCl andPEG solutions, except large seeds ofA. prostratawhich failedto germinate following transfer from -2.0 MPa NaCl. NaCl causeda greater increase in nuclear volume than iso-osmotic PEG solutions.These data suggest that the influence of NaCl is a combinationof an osmotic effect and a specific ion effect.Copyright 1998Annals of Botany Company Atriplex patula,Atriplex prostrata,cytophotometry, osmotic potential, salinity, seed germination.  相似文献   
69.
Using enzyme‐linked immunosorbent assays, the frequency of occurrence of six viruses was determined in Brassica rapa ssp. sylvestris collected from two Thameside sites (Abingdon and Culham) in Oxfordshire and one near the Avon (Claverton) in Bath & North East Somerset. During 2000–2001, the viruses detected were: Beet western yellows virus (genus Polerovirus) (BWYV), Cauliflower mosaic virus (genus Caulimovirus) (CaMV), Turnip crinkle virus (genus Carmovirus) (TCV), Turnip rosette virus (genus Sobemovirus) (TRoV), and Turnip yellow mosaic virus (genus Tymovirus) (TYMV). BWYV and TYMV were the most frequently detected viruses at the Oxford shire sites, both as single infections (20/1743 and 66/1743 respectively) and as dual infections (7/1743). Turnip mosaic virus (genus Potyvirus) (TuMV) was not detected in the field‐grown plants assayed from any of the sites. There was a highly significant (x2[1]=30.07, P<0.001) difference in the proportion of plants at each Oxfordshire site in which one or more viruses were detected, and essentially the same pattern of virus infection was observed in tests on B. rapa from the site near Claverton. At least one representative isolate of each detected virus was tested for its morphological and serological effects on glasshouse‐grown individuals from different half‐sib families of B. rapa from both Oxfordshire sites. Except for TRoV, where there was a large difference in the frequency of successful infection in B. rapa from the two locations (1/15 vs 11/15), no clear evidence of resistance or immunity to challenge was observed, although tolerance (virus invasion without symptoms) was frequent. Fewer of the plants from Abingdon were infected than those from Culham, when mechanically challenged with TRoV, but the two B. rapa populations were not otherwise consistently different, either in their infectibility by this virus or in their responses to challenge. However, with TCV, viral antigen concentration was closely linked to the severity of disease and the B. rapa from both Oxfordshire sites segregated into two classes: those with symptoms and most viral antigen, and those without symptoms and least viral antigen. These results suggest that generic risk assessments cannot be made due to differences in the way distinct B. rapa populations react to virus challenge.  相似文献   
70.
Two nearly adjacent subcatchments, located in the Adirondack Mountains of New York State, US, with similar atmospheric inputs of N (0.6 kmol ha?1 yr?1), but markedly different stream water solute concentrations, provided a unique opportunity to evaluate the mechanisms causing this variation. Subcatchment 14 (S14) had much greater stream water Ca2+ and NO3? concentrations (851 and 73 μmolc L?1, respectively) than Subcatchment 15 (S15) (427 and 26 μmolc L?1, respectively). To elucidate factors affecting the variability in stream water concentrations, soil and forest floor samples from each subcatchment were analyzed for total elemental cations and extractable N species. Mineral soil samples were also analyzed for exchangeable cations. Tree species composition was characterized in each subcatchment and potential differences in land use history and hydrology were also assessed. Compared with S15, soils in S14 had significantly higher total elemental Ca2+ in the forest floor (380 vs. 84 μmol g?1), Bs horizon (e.g. 1361 vs. 576 μmol g?1) and C horizon (1340 vs. 717 μmol g?1). Exchangeable Ca2+ was also significantly higher in the mineral soil (64 μmol g?1 in S14 vs. 8 μmol g?1 in S15). Extractable NO3? was higher in S14 compared with S15 in both the forest floor (0.1 vs. 0.01 μmol g?1) and Bs horizon (0.2 vs. 0.07 μmol g?1) while extractable NH4+ was higher in S14 vs. S15 in the forest floor (7 vs. 5 μmol g?1). The total basal area of ‘base‐rich indicator’ tree species (e.g. sugar maple, American basswood, eastern hophornbeam) was significantly greater in S14 compared with S15, which had species characteristic of sites with lower base concentrations (e.g. American beech and eastern white pine). The disparity in stream water Ca2+ and NO3?, concentrations and fluxes between S14 and S15 were explained by differences in tree species composition and soil properties rather than differences in land use or hydrology. The marked difference in soil Ca2+ concentrations in S14 vs. S15 corresponded to the higher stream water Ca2+ and the larger contribution of base‐rich tree species to the overstory biomass in S14. Soil under such species is associated with higher net mineralization and nitrification and likely contributed to the higher NO3? concentrations in the drainage waters of S14 vs. S15. Studies investigating differences in spatial and temporal patterns of the effects of chronic N deposition on surface water chemistry need to account for changes in tree species composition and how vegetation composition is influenced by soil properties, as well as climatic and biotic changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号