首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   4篇
  167篇
  2015年   4篇
  2013年   6篇
  2012年   5篇
  2011年   10篇
  2010年   18篇
  2009年   11篇
  2008年   10篇
  2007年   22篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  1997年   2篇
  1996年   6篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1964年   1篇
  1956年   1篇
  1954年   2篇
  1952年   1篇
  1951年   1篇
  1947年   1篇
  1941年   1篇
  1940年   1篇
  1937年   1篇
  1926年   1篇
  1924年   2篇
  1920年   1篇
  1919年   1篇
  1913年   2篇
  1912年   1篇
  1907年   1篇
排序方式: 共有167条查询结果,搜索用时 11 毫秒
91.
We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink‐driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought‐induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink‐driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow.  相似文献   
92.
93.
94.
Based on a unique dataset of more than 50 000 observations of ice phenology from 1213 lakes and 236 rivers in 12 different countries, we show that interannual variations in the timing of ice‐on and ice‐off on lakes and rivers are not equally pronounced over the entire Northern Hemisphere, but increase strongly towards geographical regions that experience only short periods during which the air temperature falls below 0 °C. We explain our observations by interannual fluctuation patterns of air temperature and suggest that lake and river ecosystems in such geographical regions are particularly vulnerable to global warming, as high interannual variability is known to have important ramifications for ecosystem structure and functioning. We estimate that the standard deviation of the duration of ice cover, viewed as a measure of interannual variability, exceeds 25 days for lakes and rivers located on 7% of the land area of the Northern Hemisphere. Such high variability might be an early warning signal for a critical transition from strictly dimictic, ice‐covered systems to monomictic, open‐water systems. Using the Global Lake and Wetland Database, we suggest that 3.7% of the world's lakes larger than 0.1 km2 are at high risk of becoming open‐water systems in the near future, which will have immediate consequences for global biogeochemical cycles.  相似文献   
95.
Chloroplasts perform essential signalling functions in light acclimation and various stress responses in plants. Research on chloroplast signalling has provided fundamental information concerning the diversity of cellular responses to changing environmental conditions. Evidence has also accumulated indicating that different cell types possess specialized roles in regulation of leaf development and stress acclimation when challenged by environmental cues. Leaf veins are flanked by a layer of elongated chloroplast-containing bundle sheath cells, which due to their central position hold the potential to control the flux of information inside the leaves. Indeed, a specific role for bundle sheath cells in plant acclimation to various light regimes is currently emerging. Moreover, perception of light stress initiates systemic signals that spread through the vasculature to confer stress resistance in non-exposed parts of the plant. Such long-distance signalling functions are related to unique characteristics of reactive oxygen species and their detoxification in bundle sheath cells. Novel techniques for analysis of distinct tissue types, together with Arabidopsis thaliana mutants with vasculature-specific phenotypes, have proven instrumental in dissection of structural hierarchy among regulatory processes in leaves. This review emphasizes the current knowledge concerning the role of vascular bundle sheath cells in light-dependent acclimation processes of C3 plants.  相似文献   
96.
The range dynamics of a species can either be governed by the spatial tracing of the fundamental environmental niche or by adaptation that allows to occupy new niches. Therefore, the investigation of spatial variation in the realized environmental niche is central to the understanding of species range limit dynamics. However, the study of intraspecific niche variation has been neglected in most phylogeographical studies. We studied the spatial distribution of the realized environmental niche in three land snail species of the genus Candidula , integrating phylogeographical methods, morphometrics, and spatial biodiversity informatics . The phylogeographical analyses showed significant range expansions in all species. These expansions were accompanied in Candidula gigaxii by a shift in the realized environmental niche, the species Candidula unifasciata followed its ancestral niche during expansion while the climate changed in the area of origin and Candidula rugosiuscula tracked the ancestral environmental conditions. The significant niche shifts were associated with potentially adaptive changes of shell morphology. We propose our presented approach as a practicable framework to test hypotheses on intraspecific niche evolution. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 303–317.  相似文献   
97.
The monophyly of the Neotropical entimine weevil genus Exophthalmus Schoenherr, 1823 (Curculionidae: Entiminae: Eustylini Lacordaire) is reassessed. Exophthalmus presently includes more than 80 species, approximately half of which are restricted to either the Caribbean archipelago or the continental Neotropics. The taxonomic composition and position of Exophthalmus have been subject to longstanding disagreements; in particular, authors have questioned the relationship of Exophthalmus to other Caribbean genera such as Diaprepes Schoenherr, 1834 (Eustylini) and Lachnopus Schoenherr, 1840 (Geonemini Gistel), as well as to the speciose Central and South American genera Compsus Schoenherr, 1823, Eustylus Schoenherr, 1842, and Exorides Pascoe, 1881 (all Eustylini), among others. The present study scrutinizes these traditional perspectives, based on a cladistic analysis of 143 adult morphological characters and 90 species, representing 30 genera and seven tribes of Neotropical entimine weevils. The character matrix yielded eight most‐parsimonious cladograms (length = 239 steps; consistency index = 66; retention index = 91), with mixed clade support that remains particularly wanting for some of the deeper in‐group divergences. The strict consensus supports the existence of a paraphyletic Geonemini ‘grade’ that includes Lachnopus and related Caribbean genera such as Apotomoderes Dejean, 1834, followed by a monophyletic Eustylini in‐group clade. Within the latter, a monophyletic South American Eustylini clade – including Compsus, Eustylus, Exorides, and related genera – is sister to a major clade that contains a ‘grade’ of heterogeneous and often misclassified Caribbean members of the Eustylini, Geonemini (Tetrabothynus Labram & Imhoff, 1852 and Tropirhinus Schoenherr, 1823), and Tanymecini Lacordaire (Pachnaeus Schoenherr, 1826), as well as two major clades: one with the majority of Central American Exophthalmus species, and the other with most Caribbean members of Exophthalmus. The Central American Exophthalmus clade is paraphyletic with respect to Chauliopleurus Champion, 1911 (Geonemini) and Rhinospathe Chevrolat, 1878 (Phyllobiini Schoenherr). The Caribbean clade, in turn, contains two subclades: i.e. (1) the Greater Antillean Exophthalmus s.s. clade, including the type species Exophthalmus quadrivittatus (Olivier, 1807); and (2) the primarily Lesser Antillean Diaprepes. The latter genus is therefore nested within Central American and Caribbean species of a highly paraphyletic Exophthalmus, yet may be rendered monophyletic if several Lesser Antillean Exophthalmus species are (re‐)assigned to Diaprepes. The results thus provide a suitable basis for a revision of all Exophthalmus species, and furthermore suggest that historical biographic factors, including colonization via temporary continental Neotropics‐to‐Caribbean land connections, were important in the evolution of major eustyline lineages. Based on these preliminary insights, the following taxonomic and nomenclatural adjustments are made. Compsoricus gen. nov. is erected to accommodate two Puerto Rican species erroneously assigned to Compsus: i.e. the herein designated type species Compsoricus maricao comb. nov. and Compsoricus luquillo comb. nov. Eustylus dentipes comb. nov. is transferred from Compsus. Diaprepes marginicollis Chevrolat, 1880 is reinstated from synonymy under Exophthalmus. Lastly, the following five transfers are proposed: (1) Chauliopleurus Champion, 1911, from Geonemini to Eustylini; (2) Tetrabothynus Labram & Imhoff, 1852, from Geonemini to Eustylini; (3) Tropirhinus Schoenherr, 1823, from Geonemini to Eustylini; (4) Rhinospathe Chevrolat, 1878, from Phyllobiini to Eustylini; and (5) Pachnaeus Schoenherr, 1826, from Tanymecini to Eustylini. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 510–557.  相似文献   
98.
Aretz, M. 2010: Habitats of colonial rugose corals: the Mississippian of western Europe as example for a general classification. Lethaia, DOI: 10.1111/j.1502‐3931.2010.00218.x. Colonial rugose corals are a major constituent of shallow‐water marine benthic communities in Mississippian times. The study of western European rugose coral habitats from the base of the Tournaisian stage to the Serpukhovian stage allows the recognition of four basic habitat types, which can be divided into a total of 11 subtypes. The classification is mainly based on field data, and thus rapidly applicable. Level‐bottom communities in which large colony distances are characteristic (type A) represent the most basic community type; polyspecific (subtype A1) and monospecific (subtype A2) subtypes occur. Reduced colony distances result in the formation of coral meadows (type B), which either show homogenous coral distribution (subtype B1) or the development of patches (subtype B2). Coral biostromes (type C) represent a spectrum between hydrodynamically controlled biostromes (nothing in place, subtype C1) and biologically constructed and controlled biostromes (subtype C2). The bulk of the biostromes represent mixtures of those two subtypes (subtype C3). Colonial rugose corals are widely encountered in Mississippian bioherms where they are dwellers (subtype D1), form capping beds (subtype D2), support framework building along with other organisms (subtype D3) and form coral framework (subtype D4). The latter is probably the most uncommon of all subtypes in Mississippian times. The classification is widely applicable to other groups. □Classification, habitats, Mississippian, palaeoecology, palaeoenvironment, rugose corals.  相似文献   
99.
100.
Intraspecific acoustic communication during pair formation incrickets provides excellent material for neuroethological research.It permits analysis of a distinct behavior at its neuronal level.This top-down approach considers first the behavior in quantitativeterms, then searches for its computational rules (algorithms),and finally for neuronal implementations. The research described involves high resolution behavioral measurements,extra- and intracellular recordings, and marking and photoinactivationof single nerve cells. The research focuses on sound productionin male and phonotactic behavior in female crickets and itsunderlying neuronal basis. Segmental and plurisegmental organizationwithin the nervous system are examined as well as the validityof the single identified neuron approach. Neuroethological conceptssuch as central pattern generation, feedback control, commandneuron, and in particular, cellular correlates for sign stimuliused in conspecific song recognition and sound source localizationare discussed. Crickets are ideal insects for analyzing behavioralplasticity and the contributing nerve cells. This research continuesand extends the pioneering studies of the late Kenneth DavidRoeder on nerve cells and insect behavior by developing newtechniques in behavioral and single cell analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号