首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   5篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2011年   2篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
  1968年   1篇
  1963年   1篇
  1959年   4篇
  1958年   9篇
  1957年   3篇
  1956年   8篇
  1955年   4篇
  1954年   1篇
  1953年   3篇
  1952年   5篇
  1950年   2篇
  1948年   1篇
  1939年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
71.
LINDNER HH  MARCUS S 《California medicine》1950,72(1):58-60, illust
  相似文献   
72.
73.
Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and whether drought has an impact on the interactions between roots and shoots. Limiting water availability caused photosynthetic rate and total non-structural carbohydrate (TNC) levels to decrease in 58-861. However, starch-degrading enzyme activity and gene expression were induced in roots, and soluble sugar levels were higher than in well-watered (WW) plants. These data suggest that assimilation and partitioning of carbon to the roots are decreased, resulting in mobilization of stored starch. In contrast, the photosynthetic rate of Poli was reduced only late in the treatment, and carbohydrate levels in WL plants were higher than in WW plants. Superoxide dismutase (SOD) activity and gene expression were higher in Poli than in 58-861, even in WW plants, leading to a higher capacity to defend against oxidative stress.  相似文献   
74.
75.
76.
Generally, Magnaporthe oryzae , the causal agent of rice blast disease, is considered to be a typical leaf-infecting plant pathogenic fungus. However, it was recently reported that M. oryzae shares many characteristics in common with root-infecting pathogens and indeed was able to infect roots. Here, we report on studies testing for the capacity of roots of rice and barley to resist infections with M. oryzae . We established that roots of rice plants were colonized by M. oryzae in a manner which is different from the gene-for-gene specificity seen in leaves for the same genotypes. Furthermore, treatment of rice seedlings with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a chemical that protects leaves effectively against blast by conditioning acquired resistance, was not able to prevent colonization of roots by M. oryzae although a reduction in disease levels was observed. Moreover, BTH was not able to protect barley roots against infection with M. oryzae . Taken together, our results suggest that although roots show intrinsic variation in their ability to resist colonization by M. oryzae , neither gene-for-gene incompatibility nor aquired resistance are as effective at blocking the pathogen as they are in leaves.  相似文献   
77.
Terrestrial ecosystems respond to an increased concentration of atmospheric CO2. While elevated atmospheric CO2 has been shown to alter plant growth and productivity, it also affects ecosystem structure and function by changing below-ground processes. Knowledge of how soil microbiota respond to elevated atmospheric CO2 is of paramount importance for understanding global carbon and nutrient cycling and for predicting changes at the ecosystem-level. An increase in the atmospheric CO2 concentration not only alters the weight, length, and architecture of plant roots, but also affects the biotic and abiotic environment of the root system. Since the concentration of CO2 in soil is already 10–50 times higher than that in the atmosphere, it is unlikely that increasing atmospheric CO2 will directly influence the rhizosphere. Rather, it is more likely that elevated atmospheric CO2 will affect the microbe–soil–plant root system indirectly by increasing root growth and rhizodeposition rates, and decreasing soil water deficit. Consequently, the increased amounts and altered composition of rhizosphere-released materials will have the potential to alter both population and community structure, and activity of soil- and rhizosphere-associated microorganisms. This occurrence could in turn affect plant health and productivity and plant community structure. This review covers current knowledge about the response of soil microbes to elevated concentrations of atmospheric CO2.  相似文献   
78.
SYNOPSIS. Mitochondrial and supernatant fractions were isolated from Crithidia fasciculata by grinding with neutral alumina and differential centrifugation. Supernatant fractions contained at least 2 NAD-linked enzymes: an α-glycerophosphate dehydrogenase and a malate dehydrogenase. The properties of these enzymes were investigated polarographically with phenazine ethosulfate acting as electron acceptor. Agaricic acid, cinnamic acid and p-NO2-cinnamic acid were specific inhibitors of the α-glycerophosphate dehydrogenase. Succinate, malate, DL-α-glycerophosphate and NADH stimulated respiration of mitochondrial preparations; O2 uptake was greatest with succinate. KCN and antimycin A inhibited succinate respiration more than α-glycerophosphate respiration. Amytal did not affect succinate, α-glycerophosphate or NADH oxidation. The trypanocide suramin inhibited mitochondrial respiration at least 77% with each substrate. The relevance of these results to other members of the Trypanosomatidae is discussed.  相似文献   
79.
SYNOPSIS: At low temperature (2°C), in the absence of FDPand Mg2+, the enzyme fructose disphosphatase (FDPase), extractedfrom the liver of an off-shore benthic Coryphaenoides species,is inactivated by exposures to relatively low pressures. Thesubstrate, FDP, and the cofactor, Mg2+, protect against thisinactivation, so that catalysis per se is not retarded by pressure.In contrast, at alkaline pH, pressure dramatically acceleratesthe catalytic rate when FDP and Mg2+ are saturating. The volumechange of activation, V*, for Coryphaenoides FDPase under theseconditions is about –40 cm3/mole. At low concentrationsof FDP and saturating concentrations of cofactor, the reactionrate at alkaline pH is pressure-independent. Similarly, at lowconcentrations of Mg2+ but saturating concentration of FDP,the reaction rate is pressure-independent. The Km for FDP doesnot change measureably with pressure, while the Ka for Mg2+increases slightly with pressure. Under conditions of low (probablephysiological) FDP and Mg2+ concentrations, it is evident thatthe reaction rate is determined by the kinetic characteristicsof the enzyme and not by its energy-volume relationships, asituation which would appear to be of functional and selectivesignificance to an organism living under constantly high hydrostaticpressure. AMP is a potent specific inhibitor of CoryphaenoidesFDPase. The K4 for AMP is essentially pressure-independent bothat neutral and alkaline pH, suggesting that efficiency of AMPcontrol of this enzyme is comparable at all pressures likelyto be encountered in nature.  相似文献   
80.
On the Nature of the Neurotrophic Phenomenon in Urodele Limb Regeneration   总被引:3,自引:0,他引:3  
The nervous control of regeneration of body parts in the urodeleamphibian and other animals has been one of the best model systemsfor the study of the neurotrophic phenomenon. In the past mostof these studies were experimental morphological, but recentlythe salient problems on the nature of the cellular responseto the neurotrophic agent and the nature of the nervous agentitself are also analyzed molecularly. The ensemble of studiesreviewed in the present work, which also show that the agentof the nerve is a peptide and defines aspects of its effecton molecular synthesis in regenerate cells, leads me to advancethe following theories. I propose that the neurotrophic agentaffects only the rate of ongoing events in the cell and notthe quality and kind of the events; that the events are alreadyindigenous to the responding cells; that alteration in therateof events, for example increasing the rate of molecular syntheses,yields an increased cell population which by its size and increasedcellular interactions has formative and differentiated capabilitieswhich do not exist in a smaller cell population; and finallythat the neurotrophic factor (NTF) is one of many "conversational"peptides including nervegrowth factor (NGF) and epidermal growthfactor (EGF) which function to alter the absolute rate of ongoingcellular events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号