首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93104篇
  免费   266篇
  国内免费   812篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   11839篇
  2017年   10670篇
  2016年   7446篇
  2015年   582篇
  2014年   275篇
  2013年   287篇
  2012年   4194篇
  2011年   12799篇
  2010年   11994篇
  2009年   8225篇
  2008年   9777篇
  2007年   11351篇
  2006年   253篇
  2005年   502篇
  2004年   959篇
  2003年   1013篇
  2002年   781篇
  2001年   253篇
  2000年   159篇
  1999年   23篇
  1998年   7篇
  1997年   21篇
  1996年   9篇
  1994年   6篇
  1993年   29篇
  1992年   20篇
  1991年   37篇
  1990年   8篇
  1989年   7篇
  1988年   17篇
  1987年   13篇
  1984年   7篇
  1983年   17篇
  1982年   2篇
  1980年   1篇
  1975年   5篇
  1972年   246篇
  1971年   274篇
  1970年   5篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.

Introduction

Rheumatoid arthritis (RA) is linked to increased cardiovascular morbidity and mortality, not completely explained by traditional risk factors. Importantly, the increased risk occurs despite lower levels of total and low-density lipoprotein cholesterol. Whilst systemic inflammation may be a factor, it is possible that changes in individual lipid species contribute to the increased cardiovascular risk.

Objectives

In the present study, we characterized plasma lipidomic profiles in patients with RA in comparison with healthy controls.

Methods

Patients with RA (n = 32) and age- and gender-matched healthy volunteers (n = 84) were recruited. Fasting plasma lipid profiles were measured using electrospray-ionisation tandem mass spectrometry. 24 lipid classes and subclasses were measured.

Results

Patients with RA had normal total, low-density lipoprotein and high-density lipoprotein cholesterol, but higher triglycerides than controls. Five lipid classes (dihydroceramides, alkylphosphatidylethanolamine, alkenylphosphatidylethanolamine, lysophosphatidylinositol, phosphatidylserine) differed between patients with RA and controls. Then we measured 36 lipid species within these 5 classes and found that 11 lipid species were different between patients with RA and controls. Three lipid classes (dihydroceramides, lysophosphatidylinositol, phosphatidylserine) and 10 lipid species remained significantly associated with RA after adjusting for age, sex, body mass index, current smoking, systolic blood pressure and anti-hypertensive treatment in a binary logistic regression model.

Conclusion

This study has identified lipid alterations in RA. These alterations of lipids warrant further investigation as they may be associated with accelerated atherosclerosis and joint inflammation in patient with RA.
  相似文献   
952.

Introduction

Raspberries are becoming increasingly popular due to their reported health beneficial properties. Despite the presence of only trace amounts of anthocyanins, yellow varieties seems to show similar or better effects in comparison to conventional raspberries.

Objectives

The aim of this work is to characterize the metabolic differences between red and yellow berries, focussing on the compounds showing a higher concentration in yellow varieties.

Methods

The metabolomic profile of 13 red and 12 yellow raspberries (of different varieties, locations and collection dates) was determined by UPLC–TOF-MS. A novel approach based on Pearson correlation on the extracted ion chromatograms was implemented to extract the pseudospectra of the most relevant biomarkers from high energy LC–MS runs. The raw data will be made publicly available on MetaboLights (MTBLS333).

Results

Among the metabolites showing higher concentration in yellow raspberries it was possible to identify a series of compounds showing a pseudospectrum similar to that of A-type procyanidin polymers. The annotation of this group of compounds was confirmed by specific MS/MS experiments and performing standard injections.

Conclusions

In berries lacking anthocyanins the polyphenol metabolism might be shifted to the formation of a novel class of A-type procyanidin polymers.
  相似文献   
953.

Introduction

Understanding the changes occurring in the oral ecosystem during development of gingivitis could help improve prevention and treatment strategies for oral health. Erythritol is a non-caloric polyol proposed to have beneficial effects on oral health.

Objectives

To examine the effect of experimental gingivitis and the effect of erythritol on the salivary metabolome and salivary functional biochemistry.

Methods

In a two-week experimental gingivitis challenge intervention study, non-targeted, mass spectrometry-based metabolomic profiling was performed on saliva samples from 61 healthy adults, collected at five time-points. The effect of erythritol was studied in a randomized, controlled trial setting. Fourteen salivary biochemistry variables were measured with antibody- or enzymatic activity-based assays.

Results

Bacterial amino acid catabolites (cadaverine, N-acetylcadaverine, and α-hydroxyisovalerate) and end-products of bacterial alkali-producing pathways (N-α-acetylornithine and γ-aminobutyrate) increased significantly during the experimental gingivitis. Significant changes were found in a set of 13 salivary metabolite ratios composed of host cell membrane lipids involved in cell signaling, host responses to bacteria, and defense against free radicals. An increase in mevalonate was also observed. There were no significant effects of erythritol. No significant changes were found in functional salivary biochemistry.

Conclusions

The findings underline a dynamic interaction between the host and the oral microbial biofilm during an experimental induction of gingivitis.
  相似文献   
954.
Adenosine triphosphate (ATP) acts on P2X receptors to initiate signal transmission. P2X7 receptors play a role in the pathophysiological process of myocardial ischemic injury. Long noncoding RNAs (lncRNAs) participate in numerous biological functions independent of protein translation. LncRNAs are implicated in nervous system diseases. This study investigated the effects of NONRATT021972 small interference RNA (siRNA) on the pathophysiologic processes mediated by P2X7 receptors in stellate ganglia (SG) after myocardial ischemic injury. Our results demonstrated that the expression of NONRATT021972 in SG was significantly higher in the myocardial ischemic (MI) group than in the control group. Treatment of MI rats with NONRATT021972 siRNA, the P2X7 antagonist brilliant blue G (BBG), or P2X7 siRNA improved the histology of injured ischemic cardiac tissues and decreased the elevated concentrations of serum myocardial enzymes, creatine kinase (CK), CK isoform MB (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) compared to the MI rats. NONRATT021972 siRNA, BBG, or P2X7 siRNA treatment in MI rats decreased the expression levels of P2X7 immunoreactivity, P2X7 messenger RNA (mRNA), and P2X7 protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) in the SG compared to MI rats. NONRATT021972 siRNA treatment prevented the pathophysiologic processes mediated by P2X7 receptors in the SG after myocardial ischemic injury.  相似文献   
955.
Effective therapeutic measures against the development of brain edema, a life-threatening complication of cerebral ischemia, are necessary to improve the functional outcome for the patient. Here, we identified a beneficial role of purinergic receptor P2X7 activation in acute ischemic stroke. Involvement of P2X7 in the development of neurological deficits, infarct size, brain edema, and glial responses after ischemic cerebral infarction has been analyzed. Neurologic evaluation, magnetic resonance imaging, and immunofluorescence assays were used to characterize the receptor’s effect on the disease progress during 72 h after transient middle cerebral artery occlusion (tMCAO). Sham-operated animals were included in all experiments for control purposes. We found P2X7-deficient mice to develop a more prominent brain edema with a trend towards more severe neurological deficits 24 h after tMCAO. Infarct sizes, T2 times, and apparent diffusion coefficients did not differ significantly between wild-type and P2X7?/? animals. Our results show a characteristic spatial distribution of reactive glia cells with strongly attenuated microglia activation in P2X7?/? mice 72 h after tMCAO. Our data indicate that P2X7 exerts a role in limiting the early edema formation, possibly by modulating glial responses, and supports later microglia activation.  相似文献   
956.
957.
In neutrophils, adenosine triphosphate (ATP) release and autocrine purinergic signaling regulate coordinated cell motility during chemotaxis. Here, we studied whether similar mechanisms regulate the motility of breast cancer cells. While neutrophils and benign human mammary epithelial cells (HMEC) form a single leading edge, MDA-MB-231 breast cancer cells possess multiple leading edges enriched with A3 adenosine receptors. Compared to HMEC, MDA-MB-231 cells overexpress the ectonucleotidases ENPP1 and CD73, which convert extracellular ATP released by the cells to adenosine that stimulates A3 receptors and promotes cell migration with frequent directional changes. However, exogenous adenosine added to breast cancer cells or the A3 receptor agonist IB-MECA dose-dependently arrested cell motility by simultaneous stimulation of multiple leading edges, doubling cell surface areas and significantly reducing migration velocity by up to 75 %. We conclude that MDA-MB-231 cells, HMEC, and neutrophils differ in the purinergic signaling mechanisms that regulate their motility patterns and that the subcellular distribution of A3 adenosine receptors in MDA-MB-231 breast cancer cells contributes to dysfunctional cell motility. These findings imply that purinergic signaling mechanisms may be potential therapeutic targets to interfere with the motility of breast cancer cells in order to reduce the spread of cancer cells and the risk of metastasis.  相似文献   
958.
959.
Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to “hybrid” cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells’ neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal “druggable” target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号