首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2278篇
  免费   218篇
  国内免费   2篇
  2024年   5篇
  2023年   29篇
  2022年   13篇
  2021年   116篇
  2020年   65篇
  2019年   76篇
  2018年   81篇
  2017年   60篇
  2016年   110篇
  2015年   152篇
  2014年   153篇
  2013年   173篇
  2012年   204篇
  2011年   174篇
  2010年   116篇
  2009年   103篇
  2008年   129篇
  2007年   115篇
  2006年   102篇
  2005年   111篇
  2004年   78篇
  2003年   52篇
  2002年   53篇
  2001年   23篇
  2000年   7篇
  1999年   11篇
  1998年   13篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   10篇
  1988年   12篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1971年   5篇
  1968年   4篇
  1963年   4篇
  1950年   3篇
  1919年   2篇
排序方式: 共有2498条查询结果,搜索用时 171 毫秒
31.
32.
Microbiota niches have space and/or nutrient restrictions, which has led to the coevolution of cooperation, specialisation, and competition within the population. Different animal and environmental niches contain defined resident microbiota that tend to be stable over time and offer protection against undesired intruders. Yet fluxes can occur, which alter the composition of a bacterial population. In humans, the microbiota are now considered a key contributor to maintenance of health and homeostasis, and its alteration leads to dysbiosis. The bacterial type VI secretion system (T6SS) transports proteins into the environment, directly into host cells or can function as an antibacterial weapon by killing surrounding competitors. Upon contact with neighbouring cells, the T6SS fires, delivering a payload of effector proteins. In the absence of an immunity protein, this results in growth inhibition or death of prey leading to a competitive advantage for the attacker. It is becoming apparent that the T6SS has a role in modulating and shaping the microbiota at multiple levels, which is the focus of this review. Discussed here is the T6SS, its role in competition, key examples of its effect upon the microbiota, and future avenues of research.  相似文献   
33.
Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.  相似文献   
34.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   
35.
The restoration community continues to discuss what constitutes good environmental stewardship. One area of tension is the extent to which the well‐being of wild animals should inform restoration efforts. We discuss three ways that the perspective of wild animal welfare can augment restoration ecology: strengthening people's relationship with nature, reinforcing biotic integrity, and reducing mechanistic uncertainty. The animal welfare movement elevates sentient animals as stakeholders and explores how environmental context directly impacts the well‐being of individuals. Viewing wild animals through this lens may encourage people to think and act with empathy and altruism. Second, we incorporate animal welfare into the concept of biotic integrity for ecological and ethical reasons. Restoring ecosystem processes may enhance animal welfare, and vice versa. Alternatively, there may be a trade‐off between these factors, requiring local decision‐makers to prioritize between restoring ecosystem function and promoting individuals' well‐being. We conclude by discussing how welfare can impact population recovery, thereby adding insights about mechanisms underpinning restoration objectives. Ultimately, restoration ecologists and proponents of wild animal welfare could enjoy a productive union.  相似文献   
36.
The Escherichia coli single‐strand DNA binding protein (SSB) is essential to viability where it functions to regulate SSB interactome function. Here it binds to single‐stranded DNA and to target proteins that comprise the interactome. The region of SSB that links these two essential protein functions is the intrinsically disordered linker. Key to linker function is the presence of three, conserved PXXP motifs that mediate binding to oligosaccharide‐oligonucleotide binding folds (OB‐fold) present in SSB and its interactome partners. Not surprisingly, partner OB‐fold deletions eliminate SSB binding. Furthermore, single point mutations in either the PXXP motifs or, in the RecG OB‐fold, obliterate SSB binding. The data also demonstrate that, and in contrast to the view currently held in the field, the C‐terminal acidic tip of SSB is not required for interactome partner binding. Instead, we propose the tip has two roles. First, and consistent with the proposal of Dixon, to regulate the structure of the C‐terminal domain in a biologically active conformation that prevents linkers from binding to SSB OB‐folds until this interaction is required. Second, as a secondary binding domain. Finally, as OB‐folds are present in SSB and many of its partners, we present the SSB interactome as the first family of OB‐fold genome guardians identified in prokaryotes.  相似文献   
37.
C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.  相似文献   
38.
With the advances of sequencing tools, the fields of environmental microbiology and soil ecology have been transformed. Today, the unculturable majority of soil microbes can be sequenced. Although these tools give us tremendous power and open many doors to answer important questions, we must understand how sample processing may impact our results and interpretations. Here, we test the impacts of four soil storage methods on downstream amplicon metabarcoding and qPCR analyses for fungi and bacteria. We further investigate the impact of thaw time on extracted DNA to determine a safe length of time during which this can occur with minimal impact on study results. Overall, we find that storage using standard cold packs with subsequent storage at ?20°C is little different than immediate storage in liquid nitrogen, suggesting that the historical and current method is adequate. We further find evidence that storage at room temperature or with aid of RNAlater can lead to changes in community composition and in the case of RNAlater, lower gene copies. We therefore advise against these storage methods for metabarcoding analyses. Finally, we show that over 1 month, DNA extract thaw time does not impact diversity or qPCR metrics. We hope that this work will help researchers working with soil bacteria and fungi make informed decisions about soil storage and transport to ensure repeatability and accuracy of results and interpretations.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号