首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1505篇
  免费   136篇
  2023年   17篇
  2022年   13篇
  2021年   45篇
  2020年   32篇
  2019年   39篇
  2018年   54篇
  2017年   42篇
  2016年   49篇
  2015年   110篇
  2014年   77篇
  2013年   118篇
  2012年   151篇
  2011年   130篇
  2010年   76篇
  2009年   60篇
  2008年   77篇
  2007年   76篇
  2006年   65篇
  2005年   55篇
  2004年   44篇
  2003年   42篇
  2002年   38篇
  2001年   18篇
  2000年   14篇
  1999年   15篇
  1998年   12篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   8篇
  1992年   12篇
  1991年   12篇
  1990年   17篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   10篇
  1984年   3篇
  1983年   7篇
  1980年   7篇
  1979年   3篇
  1977年   3篇
  1976年   4篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1971年   4篇
  1964年   2篇
排序方式: 共有1641条查询结果,搜索用时 15 毫秒
31.
Ecosystems - Carbon (C) fluxes among different components of plant growth are important to forest ecosystem C cycling and are strongly influenced by species composition and resource availability....  相似文献   
32.
33.
Exact locations of glacial refugia are relevant for the study of contemporary biodiversity, not only as places less disturbed during the climatic changes but also as sources of rapid expansion of the biota after the Last Glacial cycle. If continuously inhabited over several of the Quaternary glacial cycles, the refugia are readily identifiable by the accumulated genetic diversity. However, the sources of the Holocene range expansion, particularly important for the emergence of present-day bio- and phylogeographic patterns and for realistic estimation of species’ expansion rates, might have been located at the fringes of the glacial species ranges and lack unique lineages. This problem is pertinent when the variation is explored at slowly evolving genetic markers. We suggest that the location of such source refugia may be approximated by reconstructing the geographic location as a continuous trait evolving along the branches of a phylogenetic tree. We applied this approach, using the BEAST software, on two large southeast European land snail species: Caucasotachea vindobonensis and Helix thessalica. We found evidence for C. vindobonensis refugia in the western Balkans; notable is an apparently old refugium in Bosnia and Herzegovina. The plausible sources of the species’ Holocene range expansion, however, were located around the south-western end of the Carpathians. Although the source areas were likely similar in H. thessalica, some expansion sources suggested by the analyses (e.g., Podolia, Ukraine) appeared implausible and driven by sampling clustered in that area. The applied approach allows for additional exploitation of the mitochondrial data gathered during the past two decades of animal phylogeography studies.  相似文献   
34.
Populations delineated based on genetic data are commonly used for wildlife conservation and management. Many studies use the program structure combined with the ΔK method to identify the most probable number of populations (K). We recently found K = 2 was identified more often when studies used ΔK compared to studies that did not. We suggested two reasons for this: hierarchical population structure leads to underestimation, or the ΔK method does not evaluate K = 1 causing an overestimation. The present contribution aims to develop a better understanding of the limits of the method using one, two and three population simulations across migration scenarios. From these simulations we identified the “best K” using model likelihood and ΔK. Our findings show that mean probability plots and ΔK are unable to resolve the correct number of populations once migration rate exceeds 0.005. We also found a strong bias towards selecting K = 2 using the ΔK method. We used these data to identify the range of values where the ΔK statistic identifies a value of K that is not well supported. Finally, using the simulations and a review of empirical data, we found that the magnitude of ΔK corresponds to the level of divergence between populations. Based on our findings, we suggest researchers should use the ΔK method cautiously; they need to report all relevant data, including the magnitude of ΔK, and an estimate of connectivity for the research community to assess whether meaningful genetic structure exists within the context of management and conservation.  相似文献   
35.
Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus‐growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species‐specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants.  相似文献   
36.
Periods of nutrient shortage impose strong selection on animal populations. Experimental studies of genetic adaptation to nutrient shortage largely focus on resistance to acute starvation at adult stage; it is not clear how conclusions drawn from these studies extrapolate to other forms of nutritional stress. We studied the genomic signature of adaptation to chronic juvenile malnutrition in six populations of Drosophila melanogaster evolved for 150 generations on an extremely nutrient-poor larval diet. Comparison with control populations evolved on standard food revealed repeatable genomic differentiation between the two set of population, involving >3,000 candidate SNPs forming >100 independently evolving clusters. The candidate genomic regions were enriched in genes implicated in hormone, carbohydrate, and lipid metabolism, including some with known effects on fitness-related life-history traits. Rather than being close to fixation, a substantial fraction of candidate SNPs segregated at intermediate allele frequencies in all malnutrition-adapted populations. This, together with patterns of among-population variation in allele frequencies and estimates of Tajima’s D, suggests that the poor diet results in balancing selection on some genomic regions. Our candidate genes for tolerance to larval malnutrition showed a high overlap with genes previously implicated in acute starvation resistance. However, adaptation to larval malnutrition in our study was associated with reduced tolerance to acute adult starvation. Thus, rather than reflecting synergy, the shared genomic architecture appears to mediate an evolutionary trade-off between tolerances to these two forms of nutritional stress.  相似文献   
37.
Vegetation History and Archaeobotany - In a continuous, perfectly stratified sedimentary sequence which was discovered under a large sandstone overhang in northern Bohemia, Czech Republic, we...  相似文献   
38.
39.
Cannabidiol (CBD) is the primary nonpsychotropic phytocannabinoid found in Cannabis sativa, which has been proposed to be therapeutic against many conditions, including muscle spasms. Among its putative targets are voltage-gated sodium channels (Navs), which have been implicated in many conditions. We investigated the effects of CBD on Nav1.4, the skeletal muscle Nav subtype. We explored direct effects, involving physical block of the Nav pore, as well as indirect effects, involving modulation of membrane elasticity that contributes to Nav inhibition. MD simulations revealed CBD’s localization inside the membrane and effects on bilayer properties. Nuclear magnetic resonance (NMR) confirmed these results, showing CBD localizing below membrane headgroups. To determine the functional implications of these findings, we used a gramicidin-based fluorescence assay to show that CBD alters membrane elasticity or thickness, which could alter Nav function through bilayer-mediated regulation. Site-directed mutagenesis in the vicinity of the Nav1.4 pore revealed that removing the local anesthetic binding site with F1586A reduces the block of INa by CBD. Altering the fenestrations in the bilayer-spanning domain with Nav1.4-WWWW blocked CBD access from the membrane into the Nav1.4 pore (as judged by MD). The stabilization of inactivation, however, persisted in WWWW, which we ascribe to CBD-induced changes in membrane elasticity. To investigate the potential therapeutic value of CBD against Nav1.4 channelopathies, we used a pathogenic Nav1.4 variant, P1158S, which causes myotonia and periodic paralysis. CBD reduces excitability in both wild-type and the P1158S variant. Our in vitro and in silico results suggest that CBD may have therapeutic value against Nav1.4 hyperexcitability.  相似文献   
40.
Although mechanisms involved in response of Saccharomyces cerevisiae to osmotic challenge are well described for low and sudden stresses, little is known about how cells respond to a gradual increase of the osmotic pressure (reduced water activity; aw) over several generations as it could encounter during drying in nature or in food processes. Using glycerol as a stressor, we propagated S. cerevisiae through a ramp of the osmotic pressure (up to high molar concentrations to achieve testing-to-destruction) at the rate of 1.5 MPa day-1 from 1.38 to 58.5 MPa (0.990–0.635 aw). Cultivability (measured at 1.38 MPa and at the harvest osmotic pressure) and glucose consumption compared with the corresponding sudden stress showed that yeasts were able to grow until about 10.5 MPa (0.926 aw) and to survive until about 58.5 MPa, whereas glucose consumption occurred until 13.5 MPa (about 0.915 aw). Nevertheless, the ramp conferred an advantage since yeasts harvested at 10.5 and 34.5 MPa (0.778 aw) showed a greater cultivability than glycerol-shocked cells after a subsequent shock at 200 MPa (0.234 aw) for 2 days. FTIR analysis revealed structural changes in wall and proteins in the range 1.38–10.5 MPa, which would be likely to be involved in the resistance at extreme osmotic pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号