首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   12篇
  2021年   9篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   9篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   11篇
  2006年   10篇
  2005年   6篇
  2004年   10篇
  2003年   5篇
  2002年   10篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   14篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1952年   1篇
排序方式: 共有236条查询结果,搜索用时 125 毫秒
231.
Inhibition of polyamine biosynthesis and/or the perturbation of polyamine functionality have been exploited with success against parasitic diseases such as Trypanosoma infections. However, when the classical polyamine biosynthesis inhibitor, α-difluoromethylornithine, is used against the human malaria parasite, Plasmodium falciparum, it results in only a cytostatic growth arrest. Polyamine metabolism in this parasite has unique properties not shared by any other organism. These include the bifunctional arrangement of the catalytic decarboxylases and an apparent absence of the typical polyamine interconversion pathways implying different mechanisms for the regulation of polyamine homeostasis that includes the uptake of exogenous polyamines at least in vitro. These properties make polyamine metabolism an enticing drug target in P. falciparum provided that the physiological and functional consequences of polyamine metabolism perturbation are understood. This review highlights our current understanding of the biological consequences of inhibition of the biosynthetic enzymes in the polyamine pathway in P. falciparum as revealed by several global analytical approaches. Ultimately, the evidence suggests that polyamine metabolism in P. falciparum is a validated drug target worth exploiting.  相似文献   
232.
The sacU region from an alkalophilic Bacillus brevis was cloned and sequenced. The two open reading frames of the degS-degU operon encode polypeptides that gave calculated molecular masses of 43.8 kDa and 27.0 kDa, respectively. Sequence comparisons at the amino acid level to the B. subtilis degS-degU genes showed 74% and 84% similarity, respectively. On a multicopy vector the B. brevis degS-degU genes were found to cause hypersecretion of several extracellular enzymes in a B. subtilis rec strain as well as in a B. subtilis sacU(HY) strain.  相似文献   
233.
The organization and mining of malaria genomic and post-genomic data is important to significantly increase the knowledge of the biology of its causative agents, and is motivated, on a longer term, by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should, therefore, be as reliable and versatile as possible. In this context, five aspects of the organization and mining of malaria genomic and post-genomic data were examined: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes, particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Recent progress towards a grid-enabled chemogenomic knowledge space is discussed.  相似文献   
234.
Background

The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed.

Results

A chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31.

Conclusions

In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as “synthetic metabolic engineering”. Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals or materials on demand.

  相似文献   
235.
Glucocorticoid receptor (GR) concentrations and the ability of the GR to dimerize are factors which influence sensitivity to glucocorticoids. Upon glucocorticoid binding, the GR is actively transported into the nucleus, a crucial step in determining GR function. We examined the effects of GR concentration and the ability to dimerize on GR nuclear import, export and nuclear distribution using both live cell microscopy of GFP-tagged GR and immunofluorescence of untagged GR, with both wild type GR (GRwt) and dimerization deficient GR (GRdim). We found that the observed rate of GR nuclear import increases significantly at higher GR concentrations, at saturating concentrations of dexamethasone (10?6 M) using GFP-tagged GR, while with untagged GR it is only discernable at sub-saturating ligand concentrations (10?10–10?9 M). Loss of dimerization results in a slower observed rate of nuclear import (2.5- to 3.3-fold decrease for GFP-GRdim) as well as a decreased extent of GR nuclear localization (18–27% decrease for untagged GRdim). These results were linked to an increased rate of GR export at low GR concentrations (1.4- to 1.6-fold increase for untagged GR) and where GR dimerization is abrogated (1.5- to 1.7-fold increase for GFP-GRdim). Furthermore, GR dimerization was shown to be required for the appearance of discrete GC-dependent GR nuclear foci, the loss of which may explain the increased rate of GR export for the GRdim. The reduction in the observed rate of nuclear import and increased rate of nuclear export displayed at low GR concentrations and by the GRdim could explain the lowered glucocorticoid response under these conditions.  相似文献   
236.
The occurrence of electron dense deposits in sections of aldehyde-fixed tissue prepared for transmission electron microscopy has been attributed to a number of conflicting factors. In an attempt to clarify this, the precipitating effect of different combinations of phosphate or cacodylate buffer, glutaraldehyde, ethanol and uranyl acetate was investigated in test tubes. As a preliminary investigation the combination of phosphate buffer, ethanol and uranyl acetate was investigated in heart and kidney tissue fixed in glutaraldehyde with or without postosmication. The essential factors in the formation of electron dense deposits in these tissues appear to be phosphate buffer, ethanol, and uranyl acetate, although glutaraldehyde may contribute in some way. The nature and intensity of the deposits seem to vary with the sequence of combination of these factors. Osmium did not appear to be an essential factor in the reaction since deposits were observed in both osmicated and unosmicated tissue. To avoid such deposits, a postosmication distilled water wash for 20 to 30 min followed by en bloc staining with aqueous uranyl acetate is advised if phosphate buffer is used as a fixative vehicle or buffer wash after the primary fixative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号