首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   1篇
  2021年   2篇
  2019年   2篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   12篇
  2012年   20篇
  2011年   11篇
  2010年   8篇
  2009年   3篇
  2008年   5篇
  2007年   10篇
  2006年   4篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1955年   1篇
排序方式: 共有138条查询结果,搜索用时 281 毫秒
11.
Cell metabolism relies on energy transduction usually performed by complex membrane-spanning proteins that couple different chemical processes, e.g. electron and proton transfer in proton-pumps. There is great interest in determining at the molecular level the structural details that control these energy transduction events, particularly those involving multiple electrons and protons, because tight control is required to avoid the production of dangerous reactive intermediates. Tetraheme cytochrome c(3) is a small soluble and monomeric protein that performs a central step in the bioenergetic metabolism of sulfate reducing bacteria, termed "proton-thrusting," linking the oxidation of molecular hydrogen with the reduction of sulfate. The mechano-chemical coupling involved in the transfer of multiple electrons and protons in cytochrome c(3) from Desulfovibrio desulfuricans ATCC 27774 is described using results derived from the microscopic thermodynamic characterization of the redox and acid-base centers involved, crystallographic studies in the oxidized and reduced states of the cytochrome, and theoretical studies of the redox and acid-base transitions. This proton-assisted two-electron step involves very small, localized structural changes that are sufficient to generate the complex network of functional cooperativities leading to energy transduction, while using molecular mechanisms distinct from those established for other Desulfovibrio sp. cytochromes from the same structural family.  相似文献   
12.
The nitrosylation of two water-soluble iron-porphyrins, the anionic Fe(III)-meso-tetrakis(p-sulfonatophenyl)porphyrin (FeTPPS(4)) and the cationic Fe(III)-meso-tetrakis(4-N-methylpyridiniumyl)porphyrin (FeTMPyP), by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) was studied using optical absorption spectroscopy. The influence of ionic and non-ionic micelles on rates of nitric oxide transfer was investigated. Initially, the effect of the micelles on the pH-dependent equilibrium between monomeric and micro-oxo-dimeric species of the iron-porphyrins was examined. It is not affected in micelle-porphyrin systems with electric charges identical in sign. The non-ionic micelles of polidocanol induce a small negative pK shift. In contrast, the dimerization equilibrium of porphyrins in oppositely charged micellar phases is displaced to lower pH by approximately 2 units. Nitric oxide binding to monomers and micro-oxo-dimers was examined at pH 5.0 and 8.0, respectively. Contrary to nitrosylation by NO gas, SNAP induces reductive nitrosylation. There was no observed NO-Fe(III)porphyrin intermediate. Nitrosylation rates were obtained and compared in aqueous buffer and in micellar systems. Monomers nitrosylate much faster than micro-oxo-dimers. Oppositely charged micelles prevent nitrosylation of the iron-porphyrins or considerably enhance nitrosylation times. Nitrosylation rates are comparable to transnitrosylation rates between several S-nitrosothiols and thiol-containing proteins, suggesting biological relevance for the process.  相似文献   
13.
Microorganisms show an astonishing versatility in energy metabolism. They can use a variety of different catabolic electron acceptors, but they use them according to a thermodynamic hierarchy, which is determined by the redox potential of the available electron acceptors. This hierarchy is reflected by a regulatory machinery that leads to the production of respiratory chains in dependence of the availability of the corresponding electron acceptors. In this study, we showed that the γ-proteobacterium Shewanella oneidensis produces several functional electron transfer chains simultaneously. Furthermore, these chains are interconnected, most likely with the aid of c-type cytochromes. The cytochrome pool of a single S. oneidensis cell consists of ca. 700 000 hemes, which are reduced in the absence on an electron acceptor, but can be reoxidized in the presence of a variety of electron acceptors, irrespective of prior growth conditions. The small tetraheme cytochrome (STC) and the soluble heme and flavin containing fumarate reductase FccA have overlapping activity and appear to be important for this electron transfer network. Double deletion mutants showed either delayed growth or no growth with ferric iron, nitrate, dimethyl sulfoxide or fumarate as electron acceptor. We propose that an electron transfer machinery that is produced irrespective of a thermodynamic hierarchy not only enables the organism to quickly release catabolic electrons to a variety of environmental electron acceptors, but also offers a fitness benefit in redox-stratified environments.  相似文献   
14.
A sodium ion efflux, together with a proton influx and an inside-positive ΔΨ, was observed during NADH-respiration by Rhodothermus marinus membrane vesicles. Proton translocation was monitored by fluorescence spectroscopy and sodium ion transport by 23Na-NMR spectroscopy. Specific inhibitors of complex I (rotenone) and of the dioxygen reductase (KCN) inhibited the proton and the sodium ion transport, but the KCN effect was totally reverted by the addition of menaquinone analogues, indicating that both transports were catalyzed by complex I. We concluded that the coupling ion of the system is the proton and that neither the catalytic reaction nor the establishment of the delta-pH are dependent on sodium, but the presence of sodium increases proton transport. Moreover, studies of NADH oxidation at different sodium concentrations and of proton and sodium transport activities allowed us to propose a model for the mechanism of complex I in which the presence of two different energy coupling sites is suggested.  相似文献   
15.
16.
Detailed thermodynamic and structural data measured in soluble monomeric multiheme cytochromes c provided the basis to investigate the functional significance of interactions between redox co-factors. The steep decay of intramolecular interactions with distance means that close proximity of the redox centers is necessary to modulate the intrinsic reduction potentials in a significant way. This ensures selection of specific populations during redox activity in addition to maintaining fast intramolecular electron transfer. Therefore, intramolecular interactions between redox co-factors play an important role in establishing the biological function of the protein by controlling how electrons flow through and are distributed among the co-factors.  相似文献   
17.
18.
19.
20.
The impact of grazing by copepods on phytoplankton was studied during a seasonal cycle on the Galician shelf off A Coruña (NW Spain). Grazing was estimated by measuring the chlorophyll gut content and the evacuation rates of copepods from three mesh-size classes: 200-500 (small), 500-1000 (medium), and 1000-2000 μm (large). Between February 1996 and June 1997, monthly measurements of water temperature, chlorophyll concentration, primary production rates, and copepod abundance, chlorophyll gut content, and evacuation rates were taken at an 80-m-deep, fixed shelf station. Additionally, the same measurements were collected daily during two bloom events in March and in July 1996. Small copepods were the most abundant through the seasonal cycle. The highest grazing impact, however, was due to the medium and large size classes. Grazing by small copepods exceeded grazing by medium and large copepods only during phytoplankton spring blooms. The impact of copepod grazing (considering all size fractions) was generally low. On average, 2% of the phytoplankton biomass and 6% of the primary production were removed daily by the copepod community. Maximum grazing impact values (9% of the phytoplankton biomass and 39% of the primary production) were found in mid-summer. These results suggest that most of the phytoplankton biomass would escape direct copepod grazing in this upwelling area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号