首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   39篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   9篇
  2011年   10篇
  2010年   7篇
  2009年   5篇
  2008年   11篇
  2007年   12篇
  2006年   10篇
  2005年   7篇
  2004年   14篇
  2003年   9篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   9篇
  1988年   1篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1983年   5篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有215条查询结果,搜索用时 16 毫秒
71.
The Rho GTPase activating protein Rgd1 increases the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Rgd1p is a member of the F-BAR family conserved in eukaryotes; indeed, in addition to the C-terminal RhoGAP domain Rgd1p possesses an F-BAR domain at its N-terminus. Phosphoinositides discriminate between the GTPase activities of Rho3p and Rho4p through Rgd1p and specifically stimulate the RhoGAP activity of Rgd1p on Rho4p. Determining specific interactions and resolving the structure of Rgd1p should provide insight into the functioning of this family of protein. We report the preparation of highly pure and functional RhoGAP domain of Rgd1 RhoGAP domain using a high yield expression procedure. By gel filtration and circular dichroïsm we provide the first evidences for a specific interaction between a RhoGAP domain (the RhoGAP domain of Rgd1p) and phosphoinositides.  相似文献   
72.
Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system "plug" proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle.  相似文献   
73.
Malignant mesothelioma (MM) is often complicated by thromboembolic episodes, with thrombomodulin (TM) playing a critical role in the anticoagulant process. Heterogeneous expression of TM has been observed in cancer, and low or no TM expression in cancer cells is associated with poor prognosis. In this study, we analyzed TM expression in biopsies of MM patients and compared them with normal mesothelial tissue. The role of DNA methylation-associated gene silencing in TM expression was investigated. To evaluate poly(ADP-ribose) polymerase-1 (PARP1) as responsible for gene promoter epigenetic modifications, nonmalignant mesothelial cells (Met-5A) and MM cells (H28) were silenced for PARP1 and the DNA methylation/acetylation-associated TM expression evaluated. A correlation between low TM expression and high level of TM promoter methylation was found in MM biopsies. Low expression of TM was restored in MM cells by their treatment with 5-aza-2'-deoxycytidine and, to a lesser extent, with trichostatin, whereas the epigenetic agents did not affect TM expression in Met-5A cells. Silencing of PARP1 resulted in a strong down-regulation of TM expression in Met-5A cells, while restoring TM expression in H28 cells. PARP1 silencing induced TM promoter methylation in Met-5A cells and demethylation in MM cells, and this was paralleled by corresponding changes in the DNA methyltransferase activity. We propose that methylation of the TM promoter is responsible for silencing of TM expression in MM tissue, a process that is regulated by PARP1.  相似文献   
74.
Anandamide, originally described as an endocannabinoid, is the main representative molecule of a new class of signaling lipids including endocannabinoids and N-acyl-related molecules, eicosanoids, and fatty acids. Bioactive lipids regulate neuronal excitability by acting on G-protein-coupled receptors (such as CB1) but also directly modulate various ionic conductances including voltage-activated T-type calcium channels (T-channels). However, little is known about the properties and the specificity of this new class of molecules on their various targets. In this study, we have investigated the chemical determinants involved in anandamide-induced inhibition of the three cloned T-channels: Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3. We show that both the hydroxyl group and the alkyl chain of anandamide are key determinants of its effects on T-currents. As follows, T-currents are also inhibited by fatty acids. Inhibition of the three Ca(V)3 currents by anandamide and arachidonic acid does not involve enzymatic metabolism and occurs in cell-free inside-out patches. Inhibition of T-currents by fatty acids and N-acyl ethanolamides depends on the degree of unsaturation but not on the alkyl chain length and consequently is not restricted to eicosanoids. Inhibition increases for polyunsaturated fatty acids comprising 18-22 carbons when cis-double bonds are close to the carboxyl group. Therefore the major natural (food-supplied) and mammalian endogenous fatty acids including gamma-linolenic acid, mead acid, and arachidonic acid as well as the fully polyunsaturated omega3-fatty acids that are enriched in fish oil eicosapentaenoic and docosahexaenoic acids are potent inhibitors of T-currents, which possibly contribute to their physiological functions.  相似文献   
75.
Extracellular Ca(2+) ions cause a rapid block of voltage-gated sodium channels, manifest as an apparent reduction of the amplitude of single-channel currents. We examined the influence of residue Tyr-401 in the isoform rNa(V)1.4 on both single-channel conductance and Ca(2+) block. An aromatic residue at this position in the outer mouth of the pore plays a critical role in high-affinity block by the guanidinium toxin tetrodotoxin, primarily due to an electrostatic attraction between the cationic blocker and the system of pi electrons on the aromatic face. We tested whether a similar attraction between small metal cations (Na(+) and Ca(2+)) and this residue would enhance single-channel conductance or pore block, using a series of fluorinated derivatives of phenylalanine at this position. Our results show a monotonic decrease in Ca(2+) block as the aromatic ring is increasingly fluorinated, a result in accord with a cation-pi interaction between Ca(2+) and the aromatic ring. This occurred without a change of single-channel conductance, consistent with a greater electrostatic effect of the pi system on divalent than on monovalent cations. High-level quantum mechanical calculations show that Ca(2+) ions likely do not bind directly to the aromatic ring because of the substantial energetic penalty of dehydrating a Ca(2+) ion. However, the complex of a Ca(2+) ion with its inner hydration shell, Ca(2+)(H(2)O)(6), interacts electrostatically with the aromatic ring in a way that affects the local concentration of Ca(2+) ions in the extracellular vestibule.  相似文献   
76.
We investigated expression levels of Nicotinamide N-Methyltransferase (NNMT), an enzyme involved in the biotransformation of many drugs and xenobiotic compounds, in oral squamous cell carcinoma (OSCC). Measurements were performed by semi-quantitative RT-PCR and quantitative real-time PCR in tumor and matched adjacent healthy tissue. Interestingly, NNMT was up-regulated in most of the favorable OSCCs, while no marked NNMT expression alterations between tumor and normal mucosa were detected in most of the unfavorable OSCCs. Western blot and immunohistochemical analyses also were performed and the relationship between tumor characteristics and NNMT levels in OSCC were studied to evaluate the effectiveness of NNMT as a prognostic marker in the squamous cell carcinoma of the oral cavity. In summary, the present study suggests that NNMT may have potential as a biomarker and a therapeutic target for OSCC.  相似文献   
77.
Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.  相似文献   
78.
79.

Background

Homeodomain-interacting protein kinase 2 (HIPK2) is a multifunctional protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. For instance, HIPK2 knockdown induces upregulation of oncogenic hypoxia-inducible factor-1 (HIF-1) activity leading to a constitutive hypoxic and angiogenic phenotype with increased tumor growth in vivo. HIPK2 inhibition, therefore, releases pathways leading to production of pro-inflammatory molecules such as vascular endothelial growth factor (VEGF) or prostaglandin E2 (PGE2). Tumor-produced inflammatory mediators other than promote tumour growth and vascular development may permit evasion of anti-tumour immune responses. Thus, dendritic cells (DCs) dysfunction induced by tumor-produced molecules, may allow tumor cells to escape immunosurveillance. Here we evaluated the molecular mechanism of PGE2 production after HIPK2 depletion and how to modulate it.

Methodology/Principal findings

We show that HIPK2 knockdown in colon cancer cells resulted in cyclooxygenase-2 (COX-2) upregulation and COX-2-derived PGE2 generation. At molecular level, COX-2 upregulation depended on HIF-1 activity. We previously reported that zinc treatment inhibits HIF-1 activity. Here, zinc supplementation to HIPK2 depleted cells inhibited HIF-1-induced COX-2 expression and PGE2/VEGF production. At translational level, while conditioned media of both siRNA control and HIPK2 depleted cells inhibited DCs maturation, conditioned media of only zinc-treated HIPK2 depleted cells efficiently restored DCs maturation, seen as the expression of co-stimulatory molecules CD80 and CD86, cytokine IL-10 release, and STAT3 phosphorylation.

Conclusion/Significance

These findings show that: 1) HIPK2 knockdown induced COX-2 upregulation, mostly depending on HIF-1 activity; 2) zinc treatment downregulated HIF-1-induced COX-2 and inhibited PGE2/VEGF production; and 3) zinc treatment of HIPK2 depleted cells restored DCs maturation.  相似文献   
80.
The last 100 years have seen a concerning decline in male reproductive health associated with decreased sperm production, sperm function and male fertility. Concomitantly, the incidence of defects in reproductive development, such as undescended testes, hypospadias and testicular cancer has increased. Indeed testicular cancer is now recognised as the most common malignancy in young men. Such cancers develop from the pre-invasive lesion Carcinoma in Situ (CIS), a dysfunctional precursor germ cell or gonocyte which has failed to successfully differentiate into a spermatogonium. It is therefore essential to understand the cellular transition from gonocytes to spermatogonia, in order to gain a better understanding of the aetiology of testicular germ cell tumours. MicroRNA (miRNA) are important regulators of gene expression in differentiation and development and thus highly likely to play a role in the differentiation of gonocytes. In this study we have examined the miRNA profiles of highly enriched populations of gonocytes and spermatogonia, using microarray technology. We identified seven differentially expressed miRNAs between gonocytes and spermatogonia (down-regulated: miR-293, 291a-5p, 290-5p and 294*, up-regulated: miR-136, 743a and 463*). Target prediction software identified many potential targets of several differentially expressed miRNA implicated in germ cell development, including members of the PTEN, and Wnt signalling pathways. These targets converge on the key downstream cell cycle regulator Cyclin D1, indicating that a unique combination of male germ cell miRNAs coordinate the differentiation and maintenance of pluripotency in germ cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号