首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1523篇
  免费   143篇
  国内免费   3篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   22篇
  2020年   10篇
  2019年   17篇
  2018年   32篇
  2017年   18篇
  2016年   23篇
  2015年   63篇
  2014年   79篇
  2013年   77篇
  2012年   116篇
  2011年   113篇
  2010年   73篇
  2009年   87篇
  2008年   99篇
  2007年   109篇
  2006年   106篇
  2005年   105篇
  2004年   105篇
  2003年   111篇
  2002年   95篇
  2001年   13篇
  2000年   12篇
  1999年   13篇
  1998年   19篇
  1997年   21篇
  1996年   20篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   14篇
  1991年   8篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1669条查询结果,搜索用时 31 毫秒
21.
The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant (Loxodonta africana) and the African forest elephant (Loxodonta cyclotis), sister taxa separated by 2.6–5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop‐raiding versus noncrop‐raiding) on the microbiome within L. africana. We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of L. africana was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of L. cyclotis was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.  相似文献   
22.
Objective

Chromovert® Technology is presented as a new cell engineering technology to detect and purify living cells based on gene expression.

Methods

The technology utilizes fluorogenic oligonucleotide signaling probes and flow cytometry to detect and isolate individual living cells expressing one or more transfected or endogenously-expressed genes.

Results

Results for production of cell lines expressing a diversity of ion channel and membrane proteins are presented, including heteromultimeric epithelial sodium channel (αβγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αβ1β2), four unique γ-aminobutyric acid A (GABAA) receptor ion channel subunit combinations α1β3γ2s, α2β3γ2s, α3β3γ2s and α5β3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs) without reliance on leader sequences and/or chaperones. In addition, three novel plasmid-encoded sequences used to introduce 3′ untranslated RNA sequence tags in mRNA expression products and differentially-detectable fluorogenic probes directed to each are described. The tags and corresponding fluorogenic signaling probes streamline the process by enabling the multiplexed detection and isolation of cells expressing one or more genes without the need for gene-specific probes.

Conclusions

Chromovert technology is provided as a research tool for use to enrich and isolate cells engineered to express one or more desired genes.

  相似文献   
23.
24.
25.

Introduction

We evaluated the associations between bone marrow lesion (BML) volume change and changes in periarticular bone mineral density (paBMD) as well as subchondral sclerosis to determine whether BML change is associated with other local bone changes.

Methods

The convenience sample comprised participants in the Osteoarthritis Initiative (OAI) with weight-bearing posterior-anterior knee radiographs and magnetic resonance images (MRIs) at the 24- and 48-month visits and dual-energy x-ray absorptiometry (DXA) at the 30-/36-month and 48-month visits. The right knee was assessed unless contraindicated for MRI. We used knee DXA scans to measure medial tibia paBMD and medial/lateral paBMD ratio (M:L paBMD). Knee radiographs were scored for sclerosis (grades 0 to 3) in the medial tibia. Two raters determined BML volume on sagittal fat-suppressed MRI by using a semiautomated segmentation method. To focus on knees with only medial tibia BML changes, knees with lateral tibial BMLs were excluded. Medial tibial BML volume change was classified into three groups: BML regression (lowest quartile of medial tibial BML volume change), no-to-minimal change (middle two quartiles), and BML progression (highest quartile). We used proportional odds logistic regression models to evaluate the association between quartiles of changes in medial paBMD or M:L paBMD ratio, as outcomes, and BML volume change.

Results

The sample (n = 308) included 163 (53%) female subjects, 212 (69%) knees with radiographic osteoarthritis, and participants with a mean age of 63.8 ± 9.3 years and mean body mass index of 29.8 ± 4.7 kg/m2. We found an association between greater increases in medial tibia paBMD and BML regression (OR = 1.7 (95% confidence interval (CI) = 1.1 to 2.8)) and a similar trend for BML progression (OR = 1.6 (95% CI = 1.0 to 2.6]). We also detected associations between greater increase in M:L paBMD and BML regression (OR = 1.6 (95% CI = 1.0 to 2.7]) and BML progression (OR = 1.8 (95% CI = 1.1 to 3.0)), although BML regression had borderline statistical significance. The frequency of sclerosis progression in the medial tibia (n = 14) was greater among knees with BML progression or regression compared with knees without BML change (P = 0.01 and P = 0.04, respectively).

Conclusion

BML regression and BML progression are characterized by concurrent increases in paBMD and sclerosis, which are characteristic of increased radiographic osteoarthritis severity. At least during 24 months, BML regression is not representative of improvement in other periarticular bone measures.  相似文献   
26.
27.
Cottonseed remains a low‐value by‐product of lint production mainly due to the presence of toxic gossypol that makes it unfit for monogastrics. Ultra‐low gossypol cottonseed (ULGCS) lines were developed using RNAi knockdown of δ‐cadinene synthase gene(s) in Gossypium hirsutum. The purpose of the current study was to assess the stability and specificity of the ULGCS trait and evaluate the agronomic performance of the transgenic lines. Trials conducted over a period of 3 years show that the ULGCS trait was stable under field conditions and the foliage/floral organs of transgenic lines contained wild‐type levels of gossypol and related terpenoids. Although it was a relatively small‐scale study, we did not observe any negative effects on either the yield or quality of the fibre and seed in the transgenic lines compared with the nontransgenic parental plants. Compositional analysis was performed on the seeds obtained from plants grown in the field during 2009. As expected, the major difference between the ULGCS and wild‐type cottonseeds was in terms of their gossypol levels. With the exception of oil content, the composition of ULGCS was similar to that of nontransgenic cottonseeds. Interestingly, the ULGCS had significantly higher (4%–8%) oil content compared with the seeds from the nontransgenic parent. Field trial results confirmed the stability and specificity of the ULGCS trait suggesting that this RNAi‐based product has the potential to be commercially viable. Thus, it may be possible to enhance and expand the nutritional utility of the annual cottonseed output to fulfil the ever‐increasing needs of humanity.  相似文献   
28.
Ants are often considered antagonists when they visit flowers because they typically steal nectar without providing pollination services. Previous research on ant–flower interactions on two species of South African Proteaceae in the Cape Floral Kingdom revealed that the invasive Argentine ant (Linepithema humile), but not native ants, displace other floral arthropod visitors. To determine how common Argentine ant use of inflorescences is, how Argentine and native ant visits differ in the numbers they recruit to inflorescences, and what factors may affect Argentine and native ant foraging in inflorescences, I surveyed 723 inflorescences in 10 species in the genera Protea and Leucospermum across 16 sites and compared ant presence and abundance in inflorescences with abundance at nearby cat food and jam baits. Argentine ants were the most commonly encountered ant of the 22 observed. Argentine ants, as well as six species of native ants were present in all inflorescences for which they were present at nearby baits. Mean Argentine ant abundance per inflorescence was 4.4 ± 0.84 (SE) ants and similar to that of Anoplolepis custodiens and Crematogaster peringueyi, but higher than observed for the other most commonly encountered native ants, Camponotus niveosetosus and Lepisiota capensis. Both Argentine ants and A. custodiens were more likely to be found foraging in spring and under humid conditions, and in inflorescences closer to the ground, with lower sucrose concentrations, and with a greater proportion of open flowers. Argentine ants were more likely to be found in Protea inflorescences, whereas A. custodiens and L. capensis more often visited Leucospermum inflorescences. Considering its displacement of floral arthropods and widespread use of Proteaceae inflorescences, the Argentine ant could be posing a serious threat to plant and pollinator conservation in this biodiversity hotspot.  相似文献   
29.
Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In contrast to Clock−/−, Per2−/− mice have larger infarct sizes with deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we measured lactate during reperfusion in Per1−/−, Per2−/− or wildtype mice. As lactate measurements in whole blood indicated an exclusive role of Per2 in controlling lactate production during myocardial ischemia, we next performed gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2−/− mice. Surprisingly, high-throughput gene array analysis revealed dominantly lipid metabolism as the differentially regulated pathway in wildtype mice when compared to Per2−/−. In all ischemia-reperfusion protocols used, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2−/− mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated ‘Per2-genes’. Subsequent studies on inflammatory markers showed increasing IL-6 or TNFα levels during reperfusion in Per2−/− mice. In summary, these studies reveal an important role of cardiac Per2 for fatty acid metabolism and inflammation during myocardial ischemia and reperfusion, respectively.  相似文献   
30.
Aerobic capacity is a strong predictor of all-cause mortality and can influence many complex traits. To explore the biological basis underlying this connection, we developed via artificial selection two rat lines that diverge for intrinsic (i.e. inborn) aerobic capacity and differ in risk for complex disease traits. Here we conduct the first in-depth pedigree and molecular genetic analysis of these lines, the high capacity runners (HCR) and low capacity runners (LCR). Our results show that both HCR and LCR lines maintain considerable narrow-sense heritability (h2) for the running capacity phenotype over 28 generations (h2 = 0.47 ± 0.02 and 0.43 ± 0.02, respectively). To minimize inbreeding, the lines were maintained by rotational mating. Pedigree records predict that the inbreeding coefficient increases at a rate of <1% per generation, ~37-38% slower than expected for random mating. Genome-wide 10K SNP genotype data for generations 5, 14, and 26 demonstrate substantial genomic evolution: between-line differentiation increased progressively, while within-line diversity deceased. Genome-wide average heterozygosity decreased at a rate of <1% per generation, consistent with pedigree-based predictions and confirming the effectiveness of rotational breeding. Linkage disequilibrium index r2 decreases to 0.3 at ~3 Mb, suggesting that the resolution for mapping quantitative trait loci (QTL) can be as high as 2-3 cM. To establish a test population for QTL mapping, we conducted an HCR-LCR intercross. Running capacity of the F1 population (n=176) was intermediate of the HCR and LCR parentals (28 pairs); and the F2 population (n=645) showed a wider range of phenotypic distribution. Importantly, heritability in the F0-F2 pedigree remained high (h2~0.6). These results suggest that the HCR-LCR lines can serve as a valuable system for studying genomic evolution, and a powerful resource for mapping QTL for a host of characters relevant to human health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号