首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   627篇
  免费   59篇
  2022年   4篇
  2021年   21篇
  2019年   11篇
  2018年   8篇
  2017年   6篇
  2016年   19篇
  2015年   32篇
  2014年   28篇
  2013年   35篇
  2012年   41篇
  2011年   38篇
  2010年   21篇
  2009年   36篇
  2008年   28篇
  2007年   27篇
  2006年   21篇
  2005年   27篇
  2004年   32篇
  2003年   27篇
  2002年   21篇
  2001年   8篇
  2000年   14篇
  1999年   12篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   10篇
  1991年   12篇
  1990年   4篇
  1989年   7篇
  1988年   9篇
  1987年   4篇
  1986年   13篇
  1985年   6篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1979年   8篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   5篇
  1974年   9篇
  1973年   4篇
  1968年   3篇
  1964年   5篇
排序方式: 共有686条查询结果,搜索用时 208 毫秒
41.
Plant-based expression systems are attractive for the large-scale production of pharmaceutical proteins. However, glycoproteins require particular attention as inherent differences in the N-glycosylation pathways of plants and mammals result in the production of glycoproteins bearing core-xylose and core-alpha(1,3)-fucose glyco-epitopes. For treatments requiring large quantities of repeatedly administered glycoproteins, the immunological properties of these non-mammalian glycans are a concern. Recombinant glycoproteins could be retained within the endoplasmic reticulum (ER) to prevent such glycan modifications occurring in the late Golgi compartment. Therefore, we analysed cPIPP, a mouse/human chimeric IgG1 antibody binding to the beta-subunit of human chorionic gonadotropin (hCG), fused to a C-terminal KDEL sequence, to investigate the efficiency of ER retrieval and the consequences in terms of N-glycosylation. The KDEL-tagged cPIPP antibody was expressed in transgenic tobacco plants or Agrobacterium-infiltrated tobacco and winter cherry leaves. N-Glycan analysis showed that the resulting plantibodies contained only high-mannose (Man)-type Man-6 to Man-9 oligosaccharides. In contrast, the cPIPP antibody lacking the KDEL sequence was found to carry complex N-glycans containing core-xylose and core-alpha(1,3)-fucose, thereby demonstrating the secretion competence of the antibody. Furthermore, fusion of KDEL to the diabody derivative of PIPP, which contains an N-glycosylation site within the heavy chain variable domain, also resulted in a molecule lacking complex glycans. The complete absence of xylose and fucose residues clearly shows that the KDEL-mediated ER retrieval of cPIPP or its diabody derivative is efficient in preventing the formation of non-mammalian complex oligosaccharides.  相似文献   
42.
Apolipoprotein (apo) E mediates lipoprotein remnant clearance via interaction with cell-surface heparan sulfate proteoglycans. Both the 22-kDa N-terminal domain and 10-kDa C-terminal domain of apoE contain a heparin binding site; the N-terminal site overlaps with the low density lipoprotein receptor binding region and the C-terminal site is undefined. To understand the molecular details of the apoE-heparin interaction, we defined the microenvironments of all 12 lysine residues in intact apoE3 and examined their relative contributions to heparin binding. Nuclear magnetic resonance measurements showed that, in apoE3-dimyristoyl phosphatidylcholine discs, Lys-143 and -146 in the N-terminal domain and Lys-233 in the C-terminal domain have unusually low pK(a) values, indicating high positive electrostatic potential around these residues. Binding experiments using heparin-Sepharose gel demonstrated that the lipid-free 10-kDa fragment interacted strongly with heparin and a point mutation K233Q largely abolished the binding, indicating that Lys-233 is involved in heparin binding and that an unusually basic lysine microenvironment is critical for the interaction with heparin. With lipidated apoE3, it is confirmed that the Lys-233 site is completely masked and the N-terminal site mediates heparin binding. In addition, mutations of the two heparin binding sites in intact apoE3 demonstrated the dominant role of the N-terminal site in the heparin binding of apoE even in the lipid-free state. These results suggest that apoE interacts predominately with cell-surface heparan sulfate proteoglycans through the N-terminal binding site. However, Lys-233 may be involved in the binding of apoE to certain cell-surface sites, such as the protein core of biglycan.  相似文献   
43.
Carnitine palmitoyltransferase 1A (CPT1A) is the key regulatory enzyme of hepatic long-chain fatty acid beta-oxidation. Human CPT1A deficiency is characterized by recurrent attacks of hypoketotic hypoglycemia. We presently analyzed at both the functional and structural levels five missense mutations identified in three CPT1A-deficient patients, namely A275T, A414V, Y498C, G709E, and G710E. Heterologous expression in Saccharomyces cerevisiae permitted to validate them as disease-causing mutations. To gain further insights into their deleterious effects, we localized these mutated residues into a three-dimensional structure model of the human CPT1A created from the crystal structure of the mouse carnitine acetyltransferase. This study demonstrated for the first time that disease-causing CPT1A mutations can be divided into two categories depending on whether they affect directly (functional determinant) or indirectly the active site of the enzyme (structural determinant). Mutations A275T, A414V, and Y498C, which exhibit decreased catalytic efficiency, clearly belong to the second class. They are located more than 20 A away from the active site and mostly affect the stability of the protein itself and/or of the enzyme-substrate complex. By contrast, mutations G709E and G710E, which abolish CPT1A activity, belong to the first category. They affect Gly residues that are essential not only for the structure of the hydrophobic core in the catalytic site, but also for the chain-length specificity of CPT isoforms. This study provides novel insights into the functionality of CPT1A that may contribute to the design of drugs for the treatment of lipid disorders.  相似文献   
44.
The A/WySnJ mouse, but not the related A/J strain, has peripheral B-lymphocyte deficiency and mastocytosis. Minimally, two quantitative trait loci (QTLs) control the B-cell deficiency in (A/WySnJ x CAST/Ei)F2 intercross mice; one of them, Bcmd-1, mapped to Chromosome (Chr) 15. Several QTLs controlled the mastocytosis in this intercross, and it was not possible to determine whether any of them co-segregated with Bcmd-1. We have now mapped a second QTL controlling the B-cell deficiency, Bcmd-2, to Chr 4. Furthermore, we narrowed the map position of Bcmd-1 to <2.0 cM. Both QTLs have been confirmed through the construction of AW. Bcmd-1(c), AW. Bcmd-2(c), and AW. Bcmd-1(c)Bcmd-2(c) recombinant congenic strains. The Bcmd-1 locus is the major regulator of B-cell homeostasis, while Bcmd-2 is the minor regulator, and their effects are additive, as shown by splenic B-cells analysis in these congenic strains. In addition, Bcmd-2 or a linked locus controls mastocytosis, while Bcmd-1 does not, as indicated by splenic mast cell analysis in the congenic strains. Thus, the major genetic controls on B-cell homeostasis and mast cell homeostasis in A/WySnJ mice are asserted by distinct genes.  相似文献   
45.
Alcoholic cardiomyopathy is characterized by impaired ventricular function although its toxic mechanism is unclear. This study examined the impact of cardiac overexpression of alcohol dehydrogenase (ADH), which oxidizes ethanol into acetaldehyde (ACA), on ethanol-induced cardiac contractile defect. Mechanical and intracellular Ca(2+) properties were evaluated in ventricular myocytes from ADH transgenic and wild-type (FVB) mice. ACA production was assessed by gas chromatography. ADH myocytes exhibited similar mechanical properties but a higher efficiency to convert ACA compared with FVB myocytes. Acute exposure to ethanol depressed cell shortening and intracellular Ca(2+) in the FVB group with maximal inhibitions of 23.3% and 23.4%, respectively. Strikingly, the ethanol-induced depression on cell shortening and intracellular Ca(2+) was significantly augmented in the ADH group, with maximal inhibitions of 43.7% and 40.6%, respectively. Pretreatment with the ADH inhibitor 4-methylpyrazole (4-MP) or the aldehyde dehydrogenase inhibitor cyanamide prevented or augmented the ethanol-induced inhibition, respectively, in the ADH but not the FVB group. The ADH transgene also substantiated the ethanol-induced inhibition of maximal velocity of shortening/relengthening and unmasked an ethanol-induced prolongation of the duration of shortening/relengthening, which was abolished by 4-MP. These data suggest that elevated cardiac ACA exposure due to enhanced ADH expression may play an important role in the development of alcoholic cardiomyopathy.  相似文献   
46.
The Cdc37 protein in Saccharomyces cerevisiae is thought to be a kinase-targeting subunit of the chaperone Hsp90. In a genetic screen, four protein kinases were identified as interacting with Cdc37 - Cdc5, Cdc7, Cdc15 and Cak1. This result underlines the importance of Cdc37 for the folding of protein kinases. In addition, we showed that Ydj1, a yeast DnaJ homolog belonging to the Hsp40 family of chaperones, genetically interacts with Cdc37. No physical interaction has so far been detected between Cdc37 and Cdc28, although genetic interactions (synthetic lethality and mutation suppression), and biochemical studies have suggested that these two proteins functionally interact. We found that, when separately expressed, the N-terminal lobe of Cdc28 interacted strongly with the C-terminal moiety of Cdc37 in a two-hybrid system. This was not the case for the full-length Cdc28 protein. We present models to explain these results.  相似文献   
47.
BACKGROUND:Chediak-Higashi syndrome (CHS) is an inherited immunodeficiency disease characterized by giant lysosomes and impaired leukocyte degranulation. CHS results from mutations in the lysosomal trafficking regulator (LYST) gene, which encodes a 425-kD cytoplasmic protein of unknown function. The goal of this study was to identify proteins that interact with LYST as a first step in understanding how LYST modulates lysosomal exocytosis. MATERIALS AND METHODS: Fourteen cDNA fragments, covering the entire coding domain of LYST, were used as baits to screen five human cDNA libraries by a yeast two-hybrid method, modified to allow screening in the activation and the binding domain, three selectable markers, and more stringent confirmation procedures. Five of the interactions were confirmed by an in vitro binding assay. RESULTS: Twenty-one proteins that interact with LYST were identified in yeast two-hybrid screens. Four interactions, confirmed directly, were with proteins important in vesicular transport and signal transduction (the SNARE-complex protein HRS, 14-3-3, and casein kinase II). CONCLUSIONS:On the basis of protein interactions, LYST appears to function as an adapter protein that may juxtapose proteins that mediate intracellular membrane fusion reactions. The pathologic manifestations observed in CHS patients and in mice with the homologous mutation beige suggest that understanding the role of LYST may be relevant to the treatment of not only CHS but also of diseases such as asthma, urticaria, and lupus, as well as to the molecular dissection of the CHS-associated cancer predisposition.  相似文献   
48.
Diabetic cardiomyopathy is characterized by impaired ventricular contraction and altered function of insulin-like growth factor I (IGF-I), a key factor for cardiac growth and function. Endogenous IGF-I has been shown to alleviate diabetic cardiomyopathy. This study was designed to evaluate exogenous IGF-I treatment on the development of diabetic cardiomyopathy. Adult rats were divided into four groups: control, control + IGF-I, diabetic, and diabetic + IGF-I. Streptozotocin (STZ; 55 mg/kg) was used to induce experimental diabetes immediately followed by a 7-wk IGF-I (3 mg. kg(-1). day(-1) ip) treatment. Mechanical properties were assessed in ventricular myocytes including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)) and maximal velocities of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) transients were evaluated as Ca(2+)-induced Ca(2+) release and Ca(2+) clearing constant. Levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), and glucose transporter (GLUT4) were assessed by Western blot. STZ caused significant weight loss and elevated blood glucose, demonstrating the diabetic status. The diabetic state is associated with reduced serum IGF-I levels, which were restored by IGF-I treatment. Diabetic myocytes showed reduced PS and +/-dL/dt as well as prolonged TPS, TR(90), and intracellular Ca(2+) clearing compared with control. IGF-I treatment prevented the diabetes-induced abnormalities in PS, +/-dL/dt, TR(90), and Ca(2+) clearing but not TPS. The levels of SERCA and GLUT4, but not PLB, were significantly reduced in diabetic hearts compared with controls. IGF-I treatment restored the diabetes-induced decline in SERCA, whereas it had no effect on GLUT4 and PLB levels. These results suggest that exogenous IGF-I treatment may ameliorate contractile disturbances in cardiomyocytes from diabetic animals and could provide therapeutic potential in the treatment of diabetic cardiomyopathy.  相似文献   
49.
To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.  相似文献   
50.
Previous data obtained in different suspension-cultured plant cells have clearly illustrated that N-glycans are absolutely required for transport of glycoproteins to the extracellular compartment, regardless of their oligosaccharide structure [see Lerouge et al. (1998) Plant Mol. Biol. 38: 31 for review]. In the present study the role of N-glycosylation in the transport of glycoproteins to the cell surface was studied in BY2 tobacco cells using both endogenous and recombinant cell wall invertases as markers. When synthesized without their N-glycans, both invertases were very rapidly degraded. This degradation did not occur in an acidic compartment and was brefeldin A-insensitive. Therefore, it most probably represents a pre-Golgi event. However, the low efficiency of specific inhibitors did not favor a strong contribution of proteasomes in this proteolysis. In contrast, addition of a C-terminal His-Asp-Glu-Leu (HDEL) extension prevented arrival of these non-glycosylated glycoproteins in the compartment where they are degraded. These results argue for the presence of an endoplasmic reticulum (ER) domain specialized in protein degradation. Consistent with our results and the well-known stabilization of recombinant proteins retained in the ER, the addition of an ER retention signal to a protein would prevent its targeting to an ER domain devoted to degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号