首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9095篇
  免费   704篇
  国内免费   970篇
  2024年   17篇
  2023年   107篇
  2022年   178篇
  2021年   499篇
  2020年   378篇
  2019年   451篇
  2018年   374篇
  2017年   275篇
  2016年   408篇
  2015年   583篇
  2014年   699篇
  2013年   783篇
  2012年   887篇
  2011年   765篇
  2010年   491篇
  2009年   464篇
  2008年   530篇
  2007年   466篇
  2006年   387篇
  2005年   297篇
  2004年   295篇
  2003年   261篇
  2002年   213篇
  2001年   146篇
  2000年   129篇
  1999年   129篇
  1998年   82篇
  1997年   62篇
  1996年   52篇
  1995年   61篇
  1994年   64篇
  1993年   40篇
  1992年   36篇
  1991年   44篇
  1990年   31篇
  1989年   23篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
971.
Diseases of specific fibrocartilaginous joints are especially common in women of reproductive age, suggesting that female hormones contribute to their etiopathogenesis. Previously, we showed that relaxin dose-dependently induces matrix metalloproteinase (MMP) expression in isolated joint fibrocartilaginous cells. Here we determined the effects of relaxin with or without beta-estradiol on the modulation of MMPs in joint fibrocartilaginous explants, and assessed the contribution of these proteinases to the loss of collagen and glycosaminoglycan (GAG) in this tissue. Fibrocartilaginous discs from temporomandibular joints of female rabbits were cultured in medium alone or in medium containing relaxin (0.1 ng/ml) or beta-estradiol (20 ng/ml) or relaxin plus beta-estradiol. Additional experiments were done in the presence of the MMP inhibitor GM6001 or its control analog. After 48 hours of culture, the medium was assayed for MMPs and the discs were analyzed for collagen and GAG concentrations. Relaxin and beta-estradiol plus relaxin induced the MMPs collagenase-1 and stromelysin-1 in fibrocartilaginous explants--a finding similar to that which we observed in pubic symphysis fibrocartilage, but not in articular cartilage explants. The induction of these proteinases by relaxin or beta-estradiol plus relaxin was accompanied by a loss of GAGs and collagen in joint fibrocartilage. None of the hormone treatments altered the synthesis of GAGs, suggesting that the loss of this matrix molecule probably resulted from increased matrix degradation. Indeed, fibrocartilaginous explants cultured in the presence of GM6001 showed an inhibition of relaxin-induced and beta-estradiol plus relaxin-induced collagenase and stromelysin activities to control baseline levels that were accompanied by the maintenance of collagen or GAG content at control levels. These findings show for the first time that relaxin has degradative effects on non-reproductive synovial joint fibrocartilaginous tissue and provide evidence for a link between relaxin, MMPs, and matrix degradation.  相似文献   
972.
Defective glucose-stimulated insulin secretion is the main cause of hyperglycemia in type 2 diabetes mellitus. Mutations in HNF-1 cause a monogenic form of type 2 diabetes, maturity-onset diabetes of the young (MODY), characterized by impaired insulin secretion. Here we report that collectrin, a recently cloned kidney-specific gene of unknown function, is a target of HNF-1 in pancreatic β cells. Expression of collectrin was decreased in the islets of HNF-1 (−/−) mice, but was increased in obese hyperglycemic mice. Overexpression of collectrin in rat insulinoma INS-1 cells or in the β cells of transgenic mice enhanced glucose-stimulated insulin exocytosis, without affecting Ca2+ influx. Conversely, suppression of collectrin attenuated insulin secretion. Collectrin bound to SNARE complexes by interacting with snapin, a SNAP-25 binding protein, and facilitated SNARE complex formation. Therefore, collectrin is a regulator of SNARE complex function, which thereby controls insulin exocytosis.  相似文献   
973.
A new method is proposed for calculating aqueous solvation free energy based on atom-weighted solvent accessible surface areas. The method, SAWSA v2.0, gives the aqueous solvation free energy by summing the contributions of component atoms and a correction factor. We applied two different sets of atom typing rules and fitting processes for small organic molecules and proteins, respectively. For small organic molecules, the model classified the atoms in organic molecules into 65 basic types and additionally. For small organic molecules we proposed a correction factor of hydrophobic carbon to account for the aggregation of hydrocarbons and compounds with long hydrophobic aliphatic chains. The contributions for each atom type and correction factor were derived by multivariate regression analysis of 379 neutral molecules and 39 ions with known experimental aqueous solvation free energies. Based on the new atom typing rules, the correlation coefficient (r) for fitting the whole neutral organic molecules is 0.984, and the absolute mean error is 0.40 kcal mol–1, which is much better than those of the model proposed by Wang et al. and the SAWSA model previously proposed by us. Furthermore, the SAWSA v2.0 model was compared with the simple atom-additive model based on the number of atom types (NA). The calculated results show that for small organic molecules, the predictions from the SAWSA v2.0 model are slightly better than those from the atom-additive model based on NA. However, for macromolecules such as proteins, due to the connection between their molecular conformation and their molecular surface area, the atom-additive model based on the number of atom types has little predictive power. In order to investigate the predictive power of our model, a systematic comparison was performed on seven solvation models including SAWSA v2.0, GB/SA_1, GB/SA_2, PB/SA_1, PB/SA_2, AM1/SM5.2R and SM5.0R. The results showed that for organic molecules the SAWSA v2.0 model is better than the other six solvation models. For proteins, the model classified the atoms into 20 basic types and the predicted aqueous free energies of solvation by PB/SA were used for fitting. The solvation model based on the new parameters was employed to predict the solvation free energies of 38 proteins. The predicted values from our model were in good agreement with those from the PB/SA model and were much better than those given by the other four models developed for proteins.Figure The definition of hydrophobic carbons. Here CA, CB and CD are three carbon atoms; X represents a heteroatom. According to our definition, CB is a hydrophobic carbon, CA is not a hydrophobic carbon because a heteroatom is within four atoms and CD is not a hydrophobic carbon because CD is sp2- hydridized and in a six-member ring.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
974.
Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a starting compound for a new class of histidine kinase inhibitors with antibacterial activity.  相似文献   
975.
The 90-kDa heat shock protein (Hsp90) plays an important role in endothelial nitric-oxide synthase (eNOS) regulation. Besides acting as an allosteric enhancer, Hsp90 was shown to serve as a module recruiting Akt to phosphorylate the serine 1179/1177 (bovine/human) residue of eNOS. Akt is activated by the phosphorylation of 3-phosphoinositide-dependent kinase 1 (PDK1). Whether PDK1 is involved in the actions of Hsp90 on eNOS phosphorylation and function remains unknown. To address this issue, we treated bovine eNOS stably transfected human embryonic kidney 293 cells with Hsp90 inhibitors and determined the alterations of phospho-eNOS, Akt, and PDK1. Both geldanamycin and radicicol, two structurally different Hsp90 inhibitors, selectively reduced serine 1179-phosphorylated eNOS, leading to decreased enzyme activity. In Hsp90-inhibited cells, eNOS-associated phospho-Akt was decreased, but the total amount of Akt associated with eNOS remained the same. Further studies showed that Hsp90 inhibition dramatically depleted intracellular PDK1. Proteasome but not caspase blockade prevented the loss of PDK1 caused by Hsp90 inhibition. Silencing the PDK1 gene by small interfering RNA was sufficient to induce reduction of phospho-Akt and consequent loss of serine 1179-phosphorylated eNOS. Moreover, overexpression of PDK1, but not Akt, reversed Hsp90 inhibition-induced loss of eNOS serine 1179 phosphorylation and salvaged enzymatic activity. Thus, in addition to functioning as a module to recruit Akt to eNOS, Hsp90 also critically stabilized PDK1 by preventing it from proteasomal degradation. Inhibition of Hsp90 function resulted in PDK1 depletion and thus triggered a cascade of Akt deactivation, loss of eNOS serine 1179 phosphorylation, and decrease of enzyme function.  相似文献   
976.
Reactive oxygen species, including H2O2, O2*- and OH* are constantly produced in the human body and are involved in the development of cardiovascular diseases. Emerging evidence suggests that reactive oxygen species, besides their deleterious effects at high concentrations, may be protective. However, the mechanism underlying the protective effects of reactive oxygen species is not clear. Here, we reported a novel finding that H2O2 at low to moderate concentrations (50-250 microM) markedly inactivated Src family tyrosine kinases temporally and spatially in vivo but not in vitro. We further showed that Src family kinases localized to focal adhesions and the plasma membrane were rapidly and permanently inactivated by H2O2, which resulted from a profound reduction in phosphorylation of the conserved tyrosine residue at the activation loop. Interestingly, the cytoplasmic Src family kinases were activated gradually by H2O2, which partially compensated for the loss of total activities of Src family kinases but not their functions. Finally, H2O2 rendered endothelial cells resistant to growth factors and cytokines and protected the cells from inflammatory activation. Because Src family kinases play key roles in cell signaling, the rapid inactivation of Src family kinases by H2O2 may represent a novel mechanism for the protective effects of reactive oxygen species.  相似文献   
977.
CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have been phosphorylated by cAMP-dependent protein kinase (PKA). Whereas eight R-domain serines have previously been shown to be phosphorylated in purified CFTR, it is not known how individual phosphoserines regulate channel gating, although two of them, at positions 737 and 768, have been suggested to be inhibitory. Here we show, using mass spectrometric analysis, that Ser 768 is the first site phosphorylated in purified R-domain protein, and that it and five other R-domain sites are already phosphorylated in resting Xenopus oocytes expressing wild-type (WT) human epithelial CFTR. The WT channels have lower activity than S768A channels (with Ser 768 mutated to Ala) in resting oocytes, confirming the inhibitory influence of phosphoserine 768. In excised patches exposed to a range of PKA concentrations, the open probability (P(o)) of mutant S768A channels exceeded that of WT CFTR channels at all [PKA], and the half-maximally activating [PKA] for WT channels was twice that for S768A channels. As the open burst duration of S768A CFTR channels was almost double that of WT channels, at both low (55 nM) and high (550 nM) [PKA], we conclude that the principal mechanism by which phosphoserine 768 inhibits WT CFTR is by hastening the termination of open channel bursts. The right-shifted P(o)-[PKA] curve of WT channels might explain their slower activation, compared with S768A channels, at low [PKA]. The finding that phosphorylation kinetics of WT or S768A R-domain peptides were similar provides no support for an alternative explanation, that early phosphorylation of Ser 768 in WT CFTR might also impair subsequent phosphorylation of stimulatory R-domain serines. The observed reduced sensitivity to activation by [PKA] imparted by Ser 768 might serve to ensure activation of WT CFTR by strong stimuli while dampening responses to weak signals.  相似文献   
978.
979.
980.
Wen CJ  Xue B  Qin WX  Yu M  Zhang MY  Zhao DH  Gao X  Gu JR  Li CJ 《FEBS letters》2004,564(1-2):171-176
hNRAGE, a neurotrophin receptor p75 interacting MAGE homologue, is cloned from a human placenta cDNA library. hNRAGE can inhibit the colony formation of and arrest cell proliferation at the G1/S and G2/M stages in hNRAGE overexpressing cells. Interestingly, hNRAGE also increases the p53 protein level as well as its phosphorylation (Ser392). Further studies demonstrated that hNRAGE does not affect the proliferation of mouse p53-/- embryonic fibroblasts, suggesting that p53 function is required for hNRAGE induced cell cycle arrest. Moreover, the cell cycle inhibiting protein p21(WAF) is induced by hNRAGE in a p53 dependent manner. The data provide original evidence that hNRAGE arrests cell growth through a p53 dependent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号