首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   11篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   11篇
  2013年   19篇
  2012年   17篇
  2011年   12篇
  2010年   12篇
  2009年   4篇
  2008年   11篇
  2007年   17篇
  2006年   18篇
  2005年   8篇
  2004年   8篇
  2003年   10篇
  2002年   15篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有240条查询结果,搜索用时 31 毫秒
61.
62.
63.
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway.  相似文献   
64.
We used combined plasma-deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures. Changes in cytoskeletal organization and phospho FAK (tyr 397) localization were evident after 60 min on cells adhering to ROUGH surfaces. This change was characterized by the formation of actin stress fibers along lamellar membrane protrusion instead of usual focal contacts. Also the morphology of the adhering fibroblasts (60 min) adhering on ROUGH surfaces was found quite different compared to cells adhering on smooth ones.  相似文献   
65.
Obese adolescents are at risk of developing NAFLD and type 2 diabetes. We measured noninvasively the IHF content of obese adolescents to ascertain whether it is associated with insulin resistance and abnormal energy homeostasis. IHF content, whole body energy homeostasis, insulin sensitivity, and body composition were measured using localized hepatic (1)H-MRS, indirect calorimetry, fasting-derived and 3-h-OGTT-derived surrogate indexes (HOMA2 and WBISI), and DEXA, respectively, in 54 obese adolescents (24 female and 30 male, age 13 +/- 2 yr, BMI >99th percentile for their age and sex). NAFLD (defined as IHF content >5% wet weight) was found in 16 individuals (30%) in association with higher ALT (P < 0.006), Hb A(1c) (P = 0.021), trunk fat content (P < 0.03), and lower HDL cholesterol (P < 0.05). Individuals with NAFLD had higher fasting plasma glucose (89 +/- 8 vs. 83 +/- 9 mg/dl, P = 0.01) and impaired insulin sensitivity (HOMA2 and WBISI, P < 0.05). Meanwhile, parameters of insulin secretion were unaffected. Their reliance on fat oxidation in the fasting state was lower (RQ 0.83 +/- 0.08 vs. 0.77 +/- 0.05, P < 0.01), and their ability to suppress it during the oral glucose challenge was impaired (P < 0.05) vs. those with normal IHF content. When controlling for trunk fat content, the correlation between IHF content and insulin sensitivity was weakened, whereas the correlation with fasting lipid oxidation was maintained. In conclusion, NAFLD is common in childhood obesity, and insulin resistance is present in association with increased trunk fat content. In contrast, the rearrangement of whole body substrate oxidation in these youngsters appeared to be an independent feature.  相似文献   
66.
The Xylella fastidiosa genome program generated a large number of gene sequences that belong to pathogenicity, virulence and adaptation categories from this important plant pathogen. One of these genes (XF1729) encodes a protein similar to a superfamily of aldo-keto reductase together with a number of structurally and functionally related NADPH-dependent oxidoreductases. In this work, the similar sequence XF1729 from X. fastidiosa was cloned onto the pET32Xa/LIC vector in order to overexpress a recombinant His-tag fusion protein in Escherichia coli BL21(DE3). The expressed protein in the soluble fraction was purified by immobilized metal affinity chromatography (agarose-IDA-Ni resin). Secondary structure contents were verified by circular dichroism spectroscopy. Small angle X-ray scattering (SAXS) measurements furnish general structural parameters and provide a strong indication that the protein has a monomeric form in solution. Also, ab initio calculations show that the protein has some similarities with a previously crystallized aldo-keto reductase protein. The recombinant XF1729 purified to homogeneity catalyzed the reduction of dl-glyceraldehyde (K(cat) 2.26s(-1), Km 8.20+/-0.98 mM) and 2-nitrobenzaldehyde (K(cat) 11.74 s(-1), Km 0.14+/-0.04 mM) in the presence of NADPH. The amino acid sequence deduced from XF1729 showed the highest identity (40% or higher) with several functional unknown proteins. Among the identified AKRs, we found approximately 29% of identity with YakC (AKR13), 30 and 28% with AKR11A and AKR11B, respectively. The results establish XF1729 as the new member of AKR family, AKR13B1. Finally, the first characterization by gel filtration chromatography assays indicates that the protein has an elongated shape, which generates an apparent higher molecular weight. The study of this protein is an effort to fight X. fastidiosa, which causes tremendous losses in many economically important plants.  相似文献   
67.
Plasmid pRJ6 is the first known bacteriocinogenic mobilizable (Mob) plasmid of Staphylococcus aureus. Its Mob region is composed of four mob genes (mobCDAB) arranged as an operon, a genetic organization uncommon among S. aureus Mob plasmids. oriT pRJ6 was detected in a region of 431 bp, positioned immediately upstream of mobC. This region, when cloned into pCN37, was able to confer mobilization to the re-combinant plasmid only in the presence of pRJ6. The entire Mob region, including oriT pRJ6, is much more similar to Mob regions from several coagulase-negative staphylococci plasmids, although some remarkable similarities with S. aureus Mob plasmids can also be noted. These similarities include the presence within oriT pRJ6 of the three mcb (MobC binding sites), firstly described in pC221 and pC223, an identical nick site also found in these same plasmids, and a nearly identical sra pC223 site (sequence recognized by MobA). pRJ6 was successfully transferred to S. epidermidis by conjugation in the presence of the conjugative plasmid pGOl. Altogether these findings suggest that pRJ6 might have been originally a coagulase-negative staphylococci plasmid that had been transferred successfully to S. aureus.  相似文献   
68.
Enterohemorrhagic Escherichia coli (EHEC) produce one or more types of Shiga toxins and are foodborne causes of bloody diarrhea. The prototype EHEC strain, Escherichia coli O157:H7, is responsible for both sporadic cases and serious outbreaks worldwide. Infection with E. coli that produce Shiga toxins may lead to diarrhea, hemorrhagic colitis, or (less frequently) hemolytic uremic syndrome, which can cause acute kidney failure. The exact mechanism by which EHEC evokes intestinal and renal disease has not yet been determined. The development of a readily reproducible animal oral-infection model with which to evaluate the full pathogenic potential of E. coli O157:H7 and assess the efficacy of therapeutics and vaccines remains a research priority. Dutch belted (DB) rabbits are reported to be susceptible to both natural and experimental EHEC-induced disease, and New Zealand white (NZW) rabbits are a model for the intestinal manifestations of EHEC infection. In the current study, we compared the pathology caused by E. coli O157:H7 infection in DB and NZW rabbits. Both breeds of rabbits developed clinical signs of disease and intestinal lesions after experimental infection. In addition, one of the infected DB rabbits developed renal lesions. Our findings provide evidence that both breeds are susceptible to E. coli O157:H7 infection and that both may be useful models for investigating EHEC infections of humans.Abbreviations: EHEC, enterohemorrhagic E. coli; HUS, hemolytic uremic syndrome; DB, Dutch belted; STEC, Shiga-toxin– producing E. coli; NZW, New Zealand whiteEscherichia coli O157:H7 is the prototype enterohemorrhagic strain of Shiga-toxin–producing E. coli (STEC), which cause food and waterborne outbreaks and sporadic cases of serious intestinal disease that manifest as diarrhea or hemorrhagic colitis (or both).12,13,31 Enterohemorrhagic E. coli (EHEC) are a subset of STEC that, in addition to elaborating Shiga toxins, encode the locus of enterocyte effacement, whose products allow intimate attachment of the bacteria to the epithelium.16,19 Children infected with STEC are more susceptible than adults and may subsequently develop hemolytic uremic syndrome (HUS) that is characterized by hemolytic anemia, thrombocytopenia, and kidney dysfunction or failure.29 Shiga toxins are considered to be major determinants involved in the pathogenesis of these E. coli-induced infections. Indeed, the capacity of STEC to cause bloody diarrhea and HUS derives from the activity of the Stx.8,25,30,40 The 2 types of Shiga toxins, Stx1 and Stx2, are quite similar in sequence and structure, although their polyclonal antisera do not crossreact.7,38,39,42A vaccine is currently not available to protect humans from infection or disease caused by STEC. There is a need to define the pathogenic mechanisms by which STEC cause disease and to develop strategies for the prevention and treatment of STEC-mediated HUS. Achieving this goal would benefit from a small animal model that displays gastroenteritis or signs of HUS similar to those occurring in humans. Naturally infected DB rabbits mimic the clinical and pathologic signs (including diarrhea, hemorrhagic colitis, and HUS) produced by STEC in humans.11 In addition, infant NZW rabbits become infected with EHEC and subsequently exhibit diarrhea and hemorrhagic colitis.20,28,34,36 The current study compared DB and NZW rabbits for breed-specific differences in response to E. coli O157:H7 infection.  相似文献   
69.
Electromagnetic therapy is a treatment method in which an electromagnetic or magnetic stimulus is used to achieve physiological changes in the body. The specific aim of the present work concerns the effectiveness of low frequency electromagnetic fields to modify the biochemical properties of human keratinocytes (HaCaT). Cells exposed to a 7 Hz 100 microT electromagnetic field for one hour (twice daily), indicated modification in shape and morphology. These modifications were also associated with different actin distribution as revealed by phalloidin fluorescence analysis. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-Catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-Catenin expression, supporting the conclusion that exposure to electromagnetic field carries keratinocytes to an upper differentiation level. This study confirms our previous observation and supports the hypothesis that 7 Hz electromagnetic field, may modify cell biochemistry interfering in the differentiation and cellular adhesion of normal keratinocytes.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号