首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118828篇
  免费   9703篇
  国内免费   8587篇
  2023年   1306篇
  2022年   1543篇
  2021年   5421篇
  2020年   3784篇
  2019年   4793篇
  2018年   4704篇
  2017年   3396篇
  2016年   4920篇
  2015年   7431篇
  2014年   8605篇
  2013年   9146篇
  2012年   11091篇
  2011年   10027篇
  2010年   6119篇
  2009年   5525篇
  2008年   6378篇
  2007年   5785篇
  2006年   5048篇
  2005年   4238篇
  2004年   3648篇
  2003年   3120篇
  2002年   2773篇
  2001年   2211篇
  2000年   2086篇
  1999年   1904篇
  1998年   1133篇
  1997年   1063篇
  1996年   999篇
  1995年   921篇
  1994年   870篇
  1993年   598篇
  1992年   930篇
  1991年   764篇
  1990年   687篇
  1989年   541篇
  1988年   450篇
  1987年   398篇
  1986年   330篇
  1985年   365篇
  1984年   250篇
  1983年   233篇
  1982年   171篇
  1981年   120篇
  1980年   99篇
  1979年   144篇
  1978年   100篇
  1977年   92篇
  1976年   101篇
  1974年   115篇
  1972年   91篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
61.
62.
Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen–Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.  相似文献   
63.
64.
Colistin is one of the antibiotics of last resort for human health. However, the dissemination of the plasmid-mediated colistin resistance gene mcr-1 is of great concern globally. In the One Health framework, the environment is an important component for managing antimicrobial resistance. However, little information is available concerning the prevalence of mcr-1 in water environments. We aimed to reveal the prevalence of mcr-1 in different water environments in Hanoi, Vietnam. Quantitative PCR was applied to detect mcr-1 in four urban drainages receiving untreated domestic wastewater, three rivers, five lakes and two groundwater samples. Urban drainages contained higher concentrations of mcr-1, suggesting that urban residents carry the gene. The class 1 integron-integrase gene was identified as a good surrogate of antibiotic resistance genes including mcr-1. A significant correlation was found between the levels of mcr-1 and the human-specific cross-assembly phage, which is an indicator of human faecal pollution. These results indicated that the primary source of mcr-1 in urban water environments is human faeces, which is consistent with the fact that most domestic wastewater is untreated in Hanoi. The control of untreated wastewater is critical for alleviating the spread of mcr-1 in water environments in Vietnam.  相似文献   
65.
66.
67.
68.
We have previously identified two distinct forms of putative viral assembly intermediate complexes, a detergent-resistant complex (DRC) and a detergent-sensitive complex (DSC), in human immunodeficiency virus type 1 (HIV-1)-infected CD4(+) T cells (Y. M. Lee and X. F. Yu, Virology 243:78-93, 1998). In the present study, the intracellular localization of these two viral assembly intermediate complexes was investigated by use of a newly developed method of subcellular fractionation. In wild-type HIV-1-infected H9 cells, the DRC fractionated with the soluble cytoplasmic fraction, whereas the DSC was associated with the membrane fraction. The DRC was also detected in the cytoplasmic fraction in H9 cells expressing HIV-1 Myr- mutant Gag. However, little of the unmyristylated Gag and Gag-Pol proteins was found in the membrane fraction. Furthermore, HIV-1 Gag proteins synthesized in vitro in a rabbit reticulocyte lysate system in the absence of exogenous lipid membrane were able to assemble into a viral Gag complex similar to that of the DRC identified in infected H9 cells. The density of the viral Gag complex was not altered by treatment with the nonionic detergent Triton X-100, suggesting a lack of association of this complex with endogenous lipid. Formation of the DRC was not significantly affected by mutations in assembly domains M and L of the Gag protein but was drastically inhibited by a mutation in the assembly I domain. Purified DRC could be disrupted by high-salt treatment, suggesting electrostatic interactions are important for stabilizing the DRC. The Gag precursor proteins in the DRC were more sensitive to trypsin digestion than those in the DSC. These findings suggest that HIV-1 Gag and Gag-Pol precursors assemble into DRC in the cytoplasm, a process which requires the protein-protein interaction domain (I) in NCp7; subsequently, the DRC is transported to the plasma membrane through a process mediated by the M domain of the matrix protein. It appears that during this process, a conformational change might occur in the DRC either before or after its association with the plasma membrane, and this change is followed by the detection of virus budding structure at the plasma membrane.  相似文献   
69.
Cane toads (Bufo marinus) are now moving about 5 times faster through tropical Australia than they did a half-century ago, during the early phases of toad invasion. Radio-tracking has revealed higher daily rates of displacement by toads at the invasion front compared to those from long-colonised areas: toads from frontal populations follow straighter paths, move more often, and move further per displacement than do toads from older (long-established) populations. Are these higher movement rates of invasion-front toads associated with modified locomotor performance (e.g. speed, endurance)? In an outdoor raceway, toads collected from the invasion front had similar speeds, but threefold greater endurance, compared to conspecifics collected from a long-established population. Thus, increased daily displacement in invasion-front toads does not appear to be driven by changes in locomotor speed. Instead, increased dispersal is associated with higher endurance, suggesting that invasion-front toads tend to spend more time moving than do their less dispersive conspecifics. Whether this increased endurance is a cause or consequence of behavioural shifts associated with rapid dispersal is unclear. Nonetheless, shifts in endurance between frontal and core populations of this invasive species point to the complex panoply of traits affected by selection for increased dispersal ability on expanding population fronts.  相似文献   
70.
An ATP-dependent calcium transport component from rat liver plasma membranes was solubilized by cholate and reconstituted into egg lecithin vesicles by a cholate dialysis procedure. The uptake of Ca2+ into the reconstituted vesicles was ATP-dependent and the trapped Ca2+ could be released by A23187. Nucleotides, including ADP, UTP, GTP, CTP, GDP, AMP, and adenyl-5'-yl beta, gamma-imidophosphate, and p-nitrophenylphosphate did not substitute for ATP. The concentration of ATP required for half-maximal stimulation of Ca2+ uptake into the reconstituted vesicles was 6.2 microM. Magnesium was required for calcium uptake. Inhibitors of mitochondrial calcium-sequestering activities, i.e. oligomycin, sodium azide, ruthenium red, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and valinomycin did not affect the uptake of Ca2+ into the vesicles. In addition, strophanthidin and p-chloromercuribenzoate did not affect the transport. Calcium transport, however, was inhibited by vanadate in a concentration-dependent fashion with a K0.5 of 10 microM. A calcium-stimulated, vanadate-inhibitable phosphoprotein was demonstrated in the reconstituted vesicles with an apparent molecular weight of 118,000 +/- 1,300. These properties of Ca2+ transport by vesicles reconstituted from liver plasma membranes suggest that this ATP-dependent Ca2+ transport component is different from the high affinity (Ca2+-Mg2+)-ATPase found in the same membrane preparation (Lotersztajn, S., Hanoune, J. and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215; Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020). When the entire reconstituted vesicle population was treated with ATP and 45Ca in a buffer containing oxalate, the vesicles with Ca2+ transport activity could be separated from other vesicles by centrifugation in a density gradient and the ATP-dependent Ca2+ transport component was purified approximately 9-fold. This indicates that transport-specific fractionation may be used to isolate the ATP-dependent Ca2+ transport component from liver plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号