首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   776篇
  免费   55篇
  2021年   12篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   13篇
  2015年   36篇
  2014年   26篇
  2013年   33篇
  2012年   44篇
  2011年   32篇
  2010年   22篇
  2009年   23篇
  2008年   41篇
  2007年   38篇
  2006年   43篇
  2005年   23篇
  2004年   30篇
  2003年   30篇
  2002年   36篇
  2001年   20篇
  2000年   28篇
  1999年   23篇
  1998年   16篇
  1997年   10篇
  1996年   8篇
  1995年   12篇
  1994年   7篇
  1993年   8篇
  1992年   20篇
  1991年   13篇
  1990年   13篇
  1989年   14篇
  1988年   8篇
  1987年   12篇
  1986年   6篇
  1985年   7篇
  1984年   16篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1979年   4篇
  1977年   10篇
  1976年   5篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1969年   4篇
  1968年   3篇
  1964年   4篇
排序方式: 共有831条查询结果,搜索用时 31 毫秒
51.
An extracellular alpha-amylase gene from the hyperthermophilic archaeon Pyrococcus woesei has been cloned and sequenced. The 1.4-kb protein-coding sequence is identical to that of the corresponding alpha-amylase gene of the closely related species P. furiosus. By using a shuttle cloning vector for halophilic bacteria, the P. woesei alpha-amylase was expressed in the moderate halophile Halomonas elongata, under the control of a native H. elongata promoter. The hyperthermophilic amylase activity expressed in the halophilic host was recovered completely in the crude membrane fraction of cell homogenates, suggesting the formation of inclusion bodies or that the secretion machinery of H. elongata may fail to recognize and release the pyrococcal alpha-amylase to the extracellular medium. However, thermal stability, metal ion interactions, optimal temperature and pH values for the crude and purified recombinant alpha-amylase were comparable with those of the native pyrococcal enzyme. The P. woesei amylase activity expressed in H. elongata was consistently detected in the cells upon growth on a wide range of NaCl concentrations (0.7-2.5 mol l-1). To our knowledge, this is the first report on the expression of an archaeal gene (P. woesei alpha-amylase) in a moderate halophilic host which serves as a cell factory able to grow under extreme salt conditions and with very simple nutritional requirements.  相似文献   
52.
The interaction of tumor necrosis factor-alpha with its receptor CD120a (p55) initiates downstream signaling cascades that include the activation of the mitogen-activated protein kinase (MAPK), p42(mapk/erk2). The membrane proximal region of CD120a (p55) is Ser-, Thr-, and Pro-rich and contains four mitogen-activated protein kinase consensus phosphorylation sites. In recent work, we showed that CD120a (p55) itself is a target of phosphorylation by p42(mapk/erk2), and after phosphorylation, the receptor is redistributed from the cell surface and Golgi complex to intracellular tubular structures associated with elements of the endoplasmic reticulum. The goal of this study was to define the specific amino acid residues that are phosphorylated. Deletional mutagenesis of the cytoplasmic domain of CD120a (p55) indicated that two sites located between residues 207-254 and 250-300 were phosphorylated predominantly on Thr and Ser residues, respectively. Site-directed mutagenesis of Ser and Thr residues contained within the extracellular signal-regulated kinase (ERK) consensus sequences indicated that the preferred residues were Thr-236 and Ser-270. Primary phosphorylation at these sites appeared to enable subsequent phosphorylation at Ser-240 and Ser-244, although the level of phosphorylation of these latter two sites was less than the preferred sites. Through the use of specific ligation of CD120a (p55) alone and mice deficient in CD120a (p55), CD120b (p75), or both receptors, CD120a (p55) was shown to be necessary and sufficient for the induction of kinase activity. These findings thus suggest that the phosphorylation of Thr-236 and Ser-270 within the membrane proximal region of CD120a (p55) are the preferred sites of phosphorylation by p42(mapk/erk2) and may set in motion phosphorylation at other sites.  相似文献   
53.
The members of the glial cell line-derived neurotrophic factor (GDNF) family signal via binding to the glycosyl phosphatidylinositol-anchored membrane proteins, the GDNF family receptors alpha (GFRalpha), and activation of cRET. We performed a detailed analysis of the binding of GDNF and neurturin to their receptors and investigated the influence of cRET on the binding affinities. We show that the rate of dissociation of (125)I-GDNF from GFRalpha1 is increased in the presence of 50 nm GDNF, an effect that can be explained by the occurrence of negative cooperativity. Scatchard plots of the ligand concentration binding isotherms reveal a pronounced downward curvature at low (125)I-GDNF concentrations suggesting the presence of positive cooperativity. This effect is observed in the range of GDNF concentrations responsible for biological activity (1-20 pm) and may have an important role in cRET-independent signaling. A high affinity site with a K(D) of 11 pm for (125)I-GDNF is detected only when GFRalpha1 is co-expressed with cRET at a DNA ratio of 1:3. These results suggest an interaction of GFRalpha1 and cRET in the absence of GDNF and demonstrate that the high affinity binding can be measured only when cRET is present.  相似文献   
54.
The aim of this study was to improve production level of llama heavy chain antibody fragments (VHH) in Saccharomyces cerevisiae while retaining functional characteristics. For this purpose, the DNA shuffling technique was used on llama VHH fragments specific for the azo-dye reactive red-6. In the DNA shuffling process, three parental llama VHH with high amino acid sequence identity with significant differences in production and functional characteristics were used. From these parental sequences, a S. cerevisiae library was created and 16 antigen specific shuffled VHH fragments were selected. We found that these shuffled VHH fragments were, (i) unique in sequence; (ii) composed of two or three parental sequences; (iii) in three VHHs point mutations occurred; and (iv) antigen specificity was not changed. The four highest producers in the yeast S. cerevisiae were selected and production, affinity, and antigen binding at 90°C were compared with parental VHHs. One shuffled VHH was enhanced both in production (3.4-fold) and affinity (four-fold). A second shuffled VHH displayed increased production (1.9-fold), and improved stability (2.4-fold) in antigen binding at 90°C. Structural analysis suggested that improved antigen binding is associated with the A24→V24 substitution, which reduces the size of the hydrophobic pit at the llama VHH surface. We demonstrate that it is possible to improve desired characteristics of the same VHH fragment simultaneously using DNA shuffling. Finally, this is one of the first examples of DNA shuffling improving temperature stability of an antibody fragment.  相似文献   
55.
Abscission explants of bean (Phaseolus vulgaris L.) were treated with ethylene to induce cell separation at the primary abscission zone. After several days of further incubation of the remaining petiole in endogenously produced ethylene, the distal two-thirds of the petiole became senescent, and the remaining (proximal) portion stayed green. Cell-to-cell separation (secondary abscission) takes place precisely at the interface between the senescing yellow and the enlarging green cells. The expression of the abscission-associated isoform of β-1,4-glucanhydrolase, the activation of the Golgi apparatus, and enhanced vesicle formation occurred only in the enlarging cortical cells on the green side. These changes were indistinguishable from those that occur in normal abscission cells and confirm the conversion of the cortical cells to abscission-type cells. Secondary abscission cells were also induced by applying auxin to the exposed primary abscission surface after the pulvinus was shed, provided ethylene was added. Then, the orientation of development of green and yellow tissue was reversed; the distal tissue remained green and the proximal tissue yellowed. Nevertheless, separation still occurred at the junction between green and yellow cells and, again, it was one to two cell layers of the green side that enlarged and separated from their senescing neighbors. Evaluation of Feulgen-stained tissue establishes that, although nuclear changes occur, the conversion of the cortical cell to an abscission zone cell is a true transdifferentiation event, occurring in the absence of cell division.  相似文献   
56.
57.

Introduction

MLL-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year) is characterized by high relapse rates and a dismal prognosis. To facilitate the discovery of novel therapeutic targets, we here searched for genes directly influenced by the repression of various MLL fusions.

Methods

For this, we performed gene expression profiling after siRNA-mediated repression of MLL-AF4, MLL-ENL, and AF4-MLL in MLL-rearranged ALL cell line models. The obtained results were compared with various already established gene signatures including those consisting of known MLL-AF4 target genes, or those associated with primary MLL-rearranged infant ALL samples.

Results

Genes that were down-regulated in response to the repression of MLL-AF4 and MLL-ENL appeared characteristically expressed in primary MLL-rearranged infant ALL samples, and often represented known MLL-AF4 targets genes. Genes that were up-regulated in response to the repression of MLL-AF4 and MLL-ENL often represented genes typically silenced by promoter hypermethylation in MLL-rearranged infant ALL. Genes that were affected in response to the repression of AF4-MLL showed significant enrichment in gene expression profiles associated with AF4-MLL expressing t(4;11)+ infant ALL patient samples.

Conclusion

We conclude that the here identified genes readily responsive to the loss of MLL fusion expression potentially represent attractive therapeutic targets and may provide additional insights in MLL-rearranged acute leukemias.  相似文献   
58.
59.
Chromatographic and non‐chromatographic purification of biopharmaceuticals depend on the interactions between protein molecules and a solid–liquid interface. These interactions are dominated by the protein–surface properties, which are a function of protein sequence, structure, and dynamics. In addition, protein–surface properties are critical for in vivo recognition and activation, thus, purification strategies should strive to preserve structural integrity and retain desired pharmacological efficacy. Other factors such as surface diffusion, pore diffusion, and film mass transfer can impact chromatographic separation and resin design. The key factors that impact non‐chromatographic separations (e.g., solubility, ligand affinity, charges and hydrophobic clusters, and molecular dynamics) are readily amenable to computational modeling and can enhance the understanding of protein chromatographic. Previously published studies have used computational methods such as quantitative structure–activity relationship (QSAR) or quantitative structure–property relationship (QSPR) to identify and rank order affinity ligands based on their potential to effectively bind and separate a desired biopharmaceutical from host cell protein (HCP) and other impurities. The challenge in the application of such an approach is to discern key yet subtle differences in ligands and proteins that influence biologics purification. Using a relatively small molecular weight protein (insulin), this research overcame limitations of previous modeling efforts by utilizing atomic level detail for the modeling of protein–ligand interactions, effectively leveraging and extending previous research on drug target discovery. These principles were applied to the purification of different commercially available insulin variants. The ability of these computational models to correlate directionally with empirical observation is demonstrated for several insulin systems over a range of purification challenges including resolution of subtle product variants (amino acid misincorporations). Broader application of this methodology in bioprocess development may enhance and speed the development of a robust purification platform. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:154–164, 2015  相似文献   
60.

Objective

Tiredness, low energy, and listlessness are common symptoms to be associated with depression. The question remains to what extent these symptoms influence the effects of fatigue on sustained performance tasks, such as impaired task engagement and performance. Based on earlier findings, it was hypothesized that dysphoric (i.e., mildly depressed) individuals, compared to healthy controls, would display earlier fatigue onset and more severe fatigue effects on task engagement and performance during a cognitive task.

Methods

Sixty-one dysphoric and twenty-one non-dysphoric control participants were compared during one hour of continuous performance on a 2-back task. During the task subjective fatigue, subjective engagement, objective task performance, baseline pupil diameter and stimulus-evoked pupil dilation were measured.

Results

While we found that the dysphoric group reported relatively higher subjective fatigue than the healthy control group at the start of the experiment, we did not find any other divergent fatigue effects during the experimental task.

Conclusion

One explanation for the absence of divergent effect is that dysphoria may not have such a profound impact on available cognitive resources, like attention, as initially thought. Based on the results of the present study, we conclude that dysphoria is not necessarily an increased risk factor for impaired sustained performance on cognitive tasks that may induce mental fatigue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号