首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7019篇
  免费   478篇
  国内免费   592篇
  2024年   11篇
  2023年   88篇
  2022年   126篇
  2021年   361篇
  2020年   233篇
  2019年   295篇
  2018年   292篇
  2017年   218篇
  2016年   286篇
  2015年   455篇
  2014年   526篇
  2013年   535篇
  2012年   625篇
  2011年   601篇
  2010年   384篇
  2009年   320篇
  2008年   374篇
  2007年   324篇
  2006年   299篇
  2005年   253篇
  2004年   213篇
  2003年   175篇
  2002年   161篇
  2001年   106篇
  2000年   89篇
  1999年   103篇
  1998年   66篇
  1997年   65篇
  1996年   68篇
  1995年   64篇
  1994年   41篇
  1993年   46篇
  1992年   56篇
  1991年   50篇
  1990年   39篇
  1989年   28篇
  1988年   19篇
  1987年   29篇
  1986年   17篇
  1985年   17篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1977年   2篇
  1973年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1932年   1篇
排序方式: 共有8089条查询结果,搜索用时 15 毫秒
101.
Of 625 aphidicolin-resistant clones selected at 33.5°C from mutagenized mouse FM3A cells, 13 clones could not grow at 39.5°C. Five of these clones, chosen at random, resumed growth at 39.5°C when thymidine was added to the culture medium. In hybrids, conditional thymidine auxotrophy was a recessive trait, but aphidicolin-resistance was either a codominant or recessive one depending on the mutant clone used.Thymidylate synthetase activity in crude extracts of these mutants was completely inactivated by preincubation for 30 min at 42°C, whereas that of the parent cells was not affected by the same treatment. Thus, the temperature-sensitive growth of the mutants described here seems to be due to this heat-sensitive thymidylate synthetase.  相似文献   
102.
SIRT1 is a protein deacetylase that has emerged as a therapeutic target for the development of activators to treat diseases of aging. SIRT1-activating compounds (STACs) have been developed that produce biological effects consistent with direct SIRT1 activation. At the molecular level, the mechanism by which STACs activate SIRT1 remains elusive. In the studies reported herein, the mechanism of SIRT1 activation is examined using representative compounds chosen from a collection of STACs. These studies reveal that activation of SIRT1 by STACs is strongly dependent on structural features of the peptide substrate. Significantly, and in contrast to studies reporting that peptides must bear a fluorophore for their deacetylation to be accelerated, we find that some STACs can accelerate the SIRT1-catalyzed deacetylation of specific unlabeled peptides composed only of natural amino acids. These results, together with others of this study, are at odds with a recent claim that complex formation between STACs and fluorophore-labeled peptides plays a role in the activation of SIRT1 (Pacholec, M., Chrunyk, B., Cunningham, D., Flynn, D., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., Qiu, X., Stockman, B., Thanabal, V., Varghese, A., Ward, J., Withka, J., and Ahn, K. (2010) J. Biol. Chem. 285, 8340–8351). Rather, the data suggest that STACs interact directly with SIRT1 and activate SIRT1-catalyzed deacetylation through an allosteric mechanism.  相似文献   
103.
104.
105.
106.
Ceriporia accommodates a kind of wood-inhabiting polypores producing resupinate basidiocarps and causing a white rot. More than 30 species of this genus have been described; however, only a few species were referred to molecular phylogeny. In this study, a total of 203 specimens of Ceriporia were studied morphologically, and the ITS and/or nLSU regions from 42 samples, representing 18 species, were sequenced for phylogenetic analysis. Based on both morphological and phylogenetic analyses, three new species of Ceriporia, C. bubalinomarginata, C. pseudocystidiata and C. variegata, are described and illustrated. An annotated identification key is provided for all 20 species of this genus thus far known in China. Our phylogeny shows that (1) Ceriporia is not monophyletic, (2) C. spissa and C. viridans as morphologically circumscribed are polyphyletic, (3) C. inflata is retained for both C. inflata and C. jiangxiensis, and (4) presence or absence of hymenial cystidia is not a useful character in delimiting species relationships in Ceriporia.  相似文献   
107.
108.
Farnesyltransferase (FTase) is an important enzyme that catalyses the modification of protein isoprene downstream of the mevalonate pathway. Previous studies have shown that the tissue of the heart in the suprarenal abdominal aortic coarctation (AAC) group showed overexpression of FTaseβ (FNTB) and the activation of the downstream protein Ras was enhanced. FTase inhibitor (FTI) can alleviate myocardial fibrosis and partly improve cardiac remodelling in spontaneously hypertensive rats. However, the exact role and mechanism of FTase in myocardial hypertrophy and remodelling are not fully understood. Here, we used recombinant adenovirus to transfect neonatal rat ventricular cardiomyocytes to study the effect of FNTB overexpression on myocardial remodelling and explore potential mechanisms. The results showed that overexpression of FNTB induces neonatal rat ventricular myocyte hypertrophy and reduces the survival rate of cardiomyocytes. FNTB overexpression induced a decrease in mitochondrial membrane potential and increased apoptosis in cardiomyocytes. FNTB overexpression also promotes autophagosome formation and the accumulation of autophagy substrate protein, LC3II. Transmission electron microscopy (TEM) and mCherry‐GFP tandem fluorescent‐tagged LC3 (tfLC3) showed that FNTB overexpression can activate autophagy flux by enhancing autophagosome conversion to autophagolysosome. Overactivated autophagy flux can be blocked by bafilomycin A1. In addition, salirasib (a Ras farnesylcysteine mimetic) can alleviate the hypertrophic phenotype of cardiomyocytes and inhibit the up‐regulation of apoptosis and autophagy flux induced by FNTB overexpression. These results suggest that FTase may have a potential role in future treatment strategies to limit the adverse consequences of cardiac hypertrophy, cardiac dysfunction and heart failure.  相似文献   
109.
Indoleamine 2, 3-dioxygenase (IDO)-mediated regulation of tryptophan metabolism plays an important role in immune tolerance in transplantation, but it has not been elucidated which mechanism specifically induces the occurrence of immune tolerance. Our study revealed that IDO exerts immunosuppressive effects through two pathways in mouse heart transplantation, ‘tryptophan depletion’ and ‘tryptophan metabolite accumulation’. The synergism between IDO+DC and TC (tryptophan catabolic products) has stronger inhibitory effects on T lymphocyte proliferation and mouse heart transplant rejection than the two intervention factors alone, and significantly prolong the survival time of donor-derived transplanted skin. This work demonstrates that the combination of IDO+DC and TC can induce immune tolerance to a greater extent, and reduce the rejection of transplanted organs.  相似文献   
110.
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid‐2‐related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti‐oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti‐oxidant stress and anti‐inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)‐induced DA neuronal damage was performed to investigate EA‐mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D‐enciched, MN9D‐BV‐2 and MN9D‐C6 cell co‐cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT‐induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA‐mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT‐induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA‐mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2‐dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号