首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   79篇
  国内免费   1篇
  2023年   6篇
  2022年   6篇
  2021年   31篇
  2020年   15篇
  2019年   15篇
  2018年   26篇
  2017年   19篇
  2016年   36篇
  2015年   50篇
  2014年   63篇
  2013年   95篇
  2012年   113篇
  2011年   110篇
  2010年   58篇
  2009年   52篇
  2008年   69篇
  2007年   63篇
  2006年   78篇
  2005年   71篇
  2004年   72篇
  2003年   66篇
  2002年   39篇
  2001年   18篇
  2000年   13篇
  1999年   14篇
  1998年   15篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1989年   6篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1967年   2篇
  1965年   1篇
  1962年   4篇
  1957年   1篇
  1955年   3篇
排序方式: 共有1312条查询结果,搜索用时 78 毫秒
101.
In Escherichia coli the phosphotransferase system (PTS) consumes one molecule of phosphoenolpyruvate (PEP) to phosphorylate each molecule of internalized glucose. PEP bioavailability into the aromatic pathway can be increased by inactivating the PTS. However, the lack of the PTS results in decreased glucose transport and growth rates. To overcome such drawbacks in a PTS(-) strain and reconstitute rapid growth on glucose phenotype (Glc(+)), the glk and galP genes were cloned into a plasmid and the arcA gene was inactivated. Simultaneous overexpression of glk and galP increased the growth rate and regenerated a Glc(+) phenotype. However, the highest growth rate was obtained when glk and galP were overexpressed in the arcA(-) background. These results indicated that the arcA mutation enhanced glycolytic and respiratory capacities of the engineered strain.  相似文献   
102.
103.
104.
105.
Saccharomyces cerevisiae Msl5 orchestrates spliceosome assembly by binding the intron branchpoint sequence 5′-UACUAAC and, with its heterodimer partner protein Mud2, establishing cross intron-bridging interactions with the U1 snRNP at the 5′ splice site. Here we define the central Msl5 KH-QUA2 domain as sufficient for branchpoint RNA recognition. The 1.8 Å crystal structure of Msl5-(KH-QUA2) bound to the branchpoint highlights an extensive network of direct and water-mediated protein–RNA and intra-RNA atomic contacts at the interface that illuminate how Msl5 recognizes each nucleobase of the UACUAAC element. The Msl5 structure rationalizes a large body of mutational data and inspires new functional studies herein, which reveal how perturbations of the Msl5·RNA interface impede the splicing of specific yeast pre-mRNAs. We also identify interfacial mutations in Msl5 that bypass the essentiality of Sub2, a DExD-box ATPase implicated in displacing Msl5 from the branchpoint in exchange for the U2 snRNP. These studies establish an atomic resolution framework for understanding splice site selection and early spliceosome dynamics.  相似文献   
106.
107.
Excessive consumption of highly palatable food has been linked to the development of eating disorders and obesity, and can be modeled in non-food-deprived rats by offering them a limited (2-h daily) access to an optional dietary fat. Since the glutamatergic system has recently emerged as a viable target for binge-eating medication development, we compared the effects of subchronic treatment with glutamatergic receptor antagonists to the effects of a reference appetite-suppressing agent sibutramine on highly palatable food (lard) and normal chow intake. In three separate experiments, the consumption of a standard laboratory chow and lard were measured during 12 days of medication treatment and for 6 days afterwards. Generalized estimating equations analysis demonstrated that sibutramine (7.5 mg/kg, PO) significantly decreased lard consumption, with a concurrent increase in chow consumption. Sibutramine effects disappeared after treatment discontinuation. The NMDA receptor antagonist memantine (5 mg/kg, IP) significantly decreased lard consumption and increased chow consumption, comparable to effects of sibutramine; however, memantine’s effects persisted after treatment discontinuation. The effects of the mGluR5 antagonist MTEP (7.5 mg/kg, IP) on food consumption were in the same direction as seen with memantine, but the observed differences were not significant. In an additional control experiment, sibutramine and memantine reduced unlimited (24 h) chow intake during the treatment phase. Present results provide evidence that glutamatergic neurotransmission might be involved in the regulation of excessive consumption of highly palatable foods, and suggest that NMDA receptor may be an attractive target for developing obesity and disordered eating pharmacotherapies.  相似文献   
108.
Transforming growth factor β (TGF-β) is a very strong pro-fibrotic factor which mediates its action, at least in part, through the expression of connective tissue growth factor (CTGF/CCN2). Along with these cytokines, the involvement of phospholipids in wound healing and the development of fibrosis has been revealed. Among them, lysophosphatidic acid (LPA) is a novel, potent regulator of wound healing and fibrosis that has diverse effects on many types of cells. We decided to evaluate the effect of LPA together with TGF-β on CTGF expression. We found that myoblasts treated with LPA and TGF-β1 produced an additive effect on CTGF expression. In the absence of TGF-β, the induction of CTGF expression by LPA was abolished by a dominant negative form of the TGF-β receptor type II (TGF-βRII) and by the use of SB 431542, a specific inhibitor of the serine/threonine kinase activity of TGF-βRI, suggesting that CTGF induction is dependent on LPA and requires active TGF-βRs. Moreover, we show that LPA requires Smad-2/3 proteins for the induction of CTGF expression, but not their phosphorylation or their nuclear translocation. The requirement of TGF-βRI for LPA mediated-effects is differential, since treatment of myoblasts with LPA in the presence of SB 431542 abolished the induction of stress fibers but not the induction of proliferation. Finally, we demonstrated that CTGF induction in response to LPA requires the activation of JNK, but not ERK, signaling pathways. The JNK requirement is independent of TGF-βRI-mediated activity. These novel results for the mechanism of action of LPA and TGF-β are important for understanding the role of pro-fibrotic growth factors and phospholipids involved in wound healing and related diseases.  相似文献   
109.
González GE  Poggio L 《Génome》2011,54(1):26-32
The karyotypes of Zea luxurians and a race of maize from northwestern Argentina are described and compared using 4′,6-diamidino-2-phenylindole (DAPI) banding and fluorescent in situ hybridization (FISH) to localize the 180 bp knobs. The meiotic behavior of the F? artificial hybrids Z. luxurians × maize is also analyzed to determine the genomic relationships between both species. Neocentromere activity at knobs in the meiosis of the hybrids is particularly discussed. The meiotic behavior and the high pollen sterility of the hybrid revealed genetical and (or) chromosomal divergences, leading to postzygotic reproductive isolation among their parents. Here, we propose that maize shows lower genomic affinity to Z. luxurians than to other species of the genus with 2n = 20.  相似文献   
110.
Mycorrhizal fungi form a mutualistic relationship with the roots of most plant species. This association provides the arbuscular mycorrhizal (AM) fungus with sugars while the fungus improves the uptake of water and mineral nutrients in the host plant. Moreover, the induction of defense gene expression in mycorrhizal roots has been described. While salicylic acid (SA)-regulated Pathogenesis-Related (PR) proteins accumulate in rice roots colonized by the AM fungus G. intraradices , the SA content is not significantly altered in the mycorrhizal roots. Sugars, in addition to being a source of carbon for the fungus, might act as signals for the control of defense gene expression. We hypothesize that increased demands for sugars by the fungus might be responsible for the activation of the host defense responses which will then contribute to the stabilization of root colonization by the AM fungus. An excessive root colonization might change a mutualistic association into a parasitic association.Key words: Glomus intraradices, glucose, fructose, Oryza sativa, pathogenesis-related (PR), salicylic acid (SA), sucrose, sugarsThe arbuscular mycorrhizal (AM) fungi are obligate biotrophs that establish mutualistic associations with the roots of over 90% of all plant species. AM fungi improve the uptake of water and mineral nutrients in the host plant, mainly phosphorus and nitrogen, in exchange for sugars generated from photosynthesis. The benefits of the AM symbiosis on plant fitness are largely known, including increased ability to cope with biotic and abiotic stresses.1,2 In fact, the amount of carbon allocated to mycorrhizal roots might be up 20% of the total photosynthate income.3 During root colonization, the AM fungus penetrates into the root through the epidermal cells and colonizes the cortex. In the root cortical cells, the fungus forms highly branched structures, called arbuscules, which are the site of the major nutrient exchange between the two symbionts.4,5 The legumes Medicago truncatula and Lotus japonicus have been widely adopted as the reference species for studies of the AM symbiosis. Cereal crops and rice in particular are also able to establish symbiotic associations with AM fungi.6,7 Arabidopsis thaliana, the model system for functional genomics in plants, has no mycorrhization ability.It is also well known that plants have evolved inducible defense systems to protect themselves from pathogen invasion. Challenge with a pathogen activates a complex variety of defense reactions that includes the rapid generation of reactive oxygen species (ROS), changes in ion fluxes across the plasma membrane, cell wall reinforcement and production of antimicrobial compounds (e.g., phytoalexins).8 One of the most frequently observed biochemical events following pathogen infection is the accumulation of pathogenesis-related (PR) proteins.9 For some PR proteins antimicrobial activities have been described (e.g., chitinases, β-1,3-glucanases, thionins or defensins). The plant responses to pathogen attack are activated both locally and systemically. The phytohormones salicyclic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) act as defense signaling molecules for the activation of defense responses.10 Whereas SA-dependent signaling often provides resistance to biotrophic pathogens, JA/ET-dependent signaling is effective against necrotrophic pathogens.11 During plant-pathogen interactions, cross-talk between SA and JA/ET signaling pathways provides the plant with the opportunity to prioritize one pathway over another to efficiently fine-tune its defense response to the invading pathogen. Contrary to biotrophic pathogens which exhibit a high degree of host specificity, the AM fungi manage to colonize a broad range of plant species.Evidence also exists on the existence of common mechanisms and signaling pathways governing responses to AM and pathogenic fungi.2,12,13 Alterations in the content of hormones acting as defense signals also appear to occur during the AM symbiosis. As an example, JA and its derivatives (jasmonates) are believed to play an important role during the AM symbiosis in M. truncatula or tomato plants.14,15 However, controversial data exists in the literature concerning the involvement of the various defense-related hormones during AM functioning. In particular, our current understanding of SA signaling during AM symbiosis is not clear.We recently documented the symbiotic proteome of the rice roots during their interaction with the AM fungus Glomus intraradices.6 A majority of the proteins identified in the rice symbiotic proteome are proteins with a function in defense responses or sugar metabolism. Among the proteins that accumulated at high levels in mycorrhizal rice roots compared to non mycorrhizal roots were PR proteins belonging to different PR families, such as PR1, chitinases (PR3), PR5 and several PR10 proteins. The PR1 and PBZ1 (a member of the PR10 family of PR proteins) genes are considered markers of the activation of defense responses in rice plants.16,17 Of interest, the expression of many of the AM-regulated PR genes was previously reported to be induced by SA.16,1820 Proteins acting as oxidative stress protectors, such as ascorbate peroxidases, peroxidases and glutathione-S-transferases, also accumulated in mycorrhizal rice roots. Together, these observations support that the plant''s immune system is activated in the mycorrhizal rice root.To gain further insights into the molecular mechanisms governing PR gene expression in mycorrhizal roots, the SA and sugar contents of mycorrhizal roots were determined. Towards this end, rice (Oryza sativa ssp. japonica cv. Senia) plants were inoculated with the AM fungus G. intraradices.6 At 42 days post-inoculation (dpi), the overall colonization of the rice roots ranged from 25 to 30% as judged by microscopical observations of trypan blue-stained roots (results not shown; similar results were reported previously in reference 6). By this time, all the events related to fungal development, namely intraradical hyphae, arbuscules at different morphological stages of formation and vesicles, were present in G. intraradices-inoculated roots, thus confirming the establishment of the symbiotic association in the rice roots.Knowing that many AM-regulated proteins are also regulated by SA in rice roots, it was of interest to determine whether the level of endogenous SA increases in mycorrhizal roots compared to non mycorrhizal roots. In plants, intracellular SA is found predominantly as free SA and its sugar conjugate SA-glucoside (SAG). Root samples were analyzed for SA content, by measuring the level of both free SA and SAG as previously described in reference 21. This analysis revealed no significant differences, neither in free nor in SAG, between mycorrhizal and non mycorrhizal roots (Fig. 1). Then, it appears that although the expression of PR genes (functioning in a SA-dependent manner) is activated during the AM symbiosis, the fungus G. intraradices do not exploit the SA-mediated signaling pathway for induction of PR genes.Open in a separate windowFigure 1SA content, free SA and SA-glucoside (SAG) conjugate, in roots of mock-inoculated (−Gi) and G. intraradices-inoculated (+Gi) rice plants. SA determination was carried out at 42 days post-inoculation with G. intraradices. Three independent biological samples and three replicates per biological sample were used for quantification of SA. Two out of the three samples were the same ones used for the characterization of the symbiotic proteome in which the accumulation of SA-regulated PR genes was observed in reference 6. FW, fresh weight. Bars represent the means ± standard error.On the other hand, a direct link between sugar metabolism and the plant defense response has been established, including the phenomenon of high sugarmediated resistance and the finding that various key PR genes are induced by sugars. Transgenic approaches that lead to alterations in photoassimilate partitioning, either sucrose or hexoses, also alter PR gene expression.22,23 In other studies, a SA-independent induction of PR genes by soluble sugars, sucrose, glucose and fructose, was reported in reference 24.Sucrose, the main form of assimilated carbon during photosynthesis, is transported to the root tissues via the phloem where it becomes available to the root cells. As previously mentioned, characterization of the rice symbiotic proteome revealed alterations in the accumulation of proteins involved in sugar metabolism, such as enzymes involved in glucolysis/gluconeogenesis (e.g., fructose-1,6-bisphophate aldolase, enolase) or in pentose interconversions (e.g., UDP-glucose dehydrogenase).6 Because the plant provides sugars to the fungus, it is not surprising to find alterations in enzymes involved in sugar metabolism in the mycorrhizal roots. Evidence also supports that AM fungi acquire hexoses from the host cell and transform it into trehalose and glycogen, the typical sugars in the fungus.25 Utilization of sucrose then requires hydrolysis in the plant cell which can be performed by sucrose synthase, producing UDP-glucose and fructose or invertases, producing glucose and fructose. Along with this, increased activities of invertases and sucrose synthases or increased expression of their corresponding genes, have been described during AM symbiotic interactions.26,27 Very recently, the MtSucS1 sucrose synthase gene was reported to be essential for the establishment and maintenance of the AM symbiosis in Medicago truncatula.28 In this context, we decided to explore whether colonization by G. intraradices has an effect on the accumulation of soluble sugars in rice roots.Sucrose, glucose and fructose content were measured enzymatically23 in the rice roots at 42 days post-inoculation with G. intraradices . A tendency to a higher sucrose level was observed in mycorrhizal roots compared to non-mycorrhizal roots (Fig. 2). Concerning the hexose content, the mycorrhizal roots had a significantly lower hexose, both glucose and fructose levels, compared to non-mycorrhizal roots (p ≤ 0.05, Fig. 2). This finding is in agreement with results reported by other authors indicating that the fungal symbiont takes up and uses hexoses within the root.29,30 The observation that the sucrose content is not significantly affected by mycorrhiza functioning, indicates that the host cell is able to sense sucrose concentration in order to maintain it at sufficient but constant levels to satisfy the demand for sugars by the fungal symbiont.Open in a separate windowFigure 2Sugar content in roots of rice plants inoculated with G. intraradices (+Gi) or mock-inoculated (−Gi). (A) Sucrose content. (B) Glucose content. (C) Fructose content. Measurements were made at 42 days post-inoculation with G. intraradices. Bars represent the means ± standard error.Clearly, the outcome of the AM symbiosis is an overall improvement of the fitness of both partners: the plant supplies the fungus with photosynthates whereas the fungus delivers nutrients from the soil to the host plant. Variations in the extent of colonization of the AM fungi will impose different carbon demands on the plants. However, a high demand of photosynthates by the mycorrhizal root might result in increased mycorrhization which, in turn, might be detrimental for the host plant. The rate of colonization and the amount of fungal biomass must then be tightly controlled by the host plant. We postulate that an increased sink strength by AM colonization might result in transient and/or localized increases in sugar concentrations in the root cell which might be the signal for the activation of defense gene expression. A schematic representation of plant responses associated with increased demands for sugars and deployment of defense responses is shown in Figure 3. According to this model, sugars might play a dual role during the AM symbiosis: (1) sugars are transferred from the plant to the fungus in exchange of mineral nutrients and (2) sugars alter host gene expression, leading to the activation of defense-related genes. This will allow the host plant to avoid an excessive root colonization by the AM fungus that might cause negative effects on the plant''s fitness. A complex exchange and interplay of signals between plant roots and AM fungi must then operate during functioning of the AM symbiosis for coordination of joint nutrient resource explotation strategies and control of the plant''s immune system. During evolution, co-adaptation between the two symbionts, the AM fungi and the host plant, must have occurred for stabilization of mycorrhizal cooperation and optimal functioning of mycorrhizal associations along the mutualism-parasitism continuum.Open in a separate windowFigure 3Proposed model for a sugar mediated-activation of defense-related genes in mycorrhizal roots. In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. Arbuscules are the site of mineral nutrient transfer to the plant and the site of carbon acquisition by the fungus. Although arbuscules form within the root cortical cells, they remain separated from the plant cell cytoplasm by a plant-derived membrane, the periarbuscular membrane. In this way, an interface is created between the plant and fungal cells which appears to be optimal for nutrient transfer. Sucrose is transported through the phloem into the root. In the root cell, sucrose is hydrolyzed by host invertase and sucrose synthase activities before uptake by the AM fungus. Hexose uptake at the plant-fungus interfase might be passive with a concentration gradient maintained by rapid conversion of hexoses taken up by the fungus to trehalose and glycogen. Active mechanisms might also operate for hexose transport processes between the host cell and the symbiont. Under conditions of a high demand for sugars by the AM fungus, transient increases in sugar content will occur in the root cells which would be the signal for the activation of the host defense responses. The host-produced defense compounds would stabilize the level of root colonization by the AM fungus. An excessive root colonization might change the mutualistic association into a parasitic one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号