首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106071篇
  免费   8405篇
  国内免费   8813篇
  2024年   135篇
  2023年   1252篇
  2022年   1592篇
  2021年   5363篇
  2020年   3767篇
  2019年   4673篇
  2018年   4416篇
  2017年   3232篇
  2016年   4592篇
  2015年   6676篇
  2014年   7842篇
  2013年   8292篇
  2012年   9978篇
  2011年   8974篇
  2010年   5545篇
  2009年   4970篇
  2008年   5711篇
  2007年   5130篇
  2006年   4454篇
  2005年   3491篇
  2004年   2969篇
  2003年   2719篇
  2002年   2272篇
  2001年   1866篇
  2000年   1694篇
  1999年   1670篇
  1998年   1036篇
  1997年   1001篇
  1996年   941篇
  1995年   821篇
  1994年   787篇
  1993年   617篇
  1992年   818篇
  1991年   617篇
  1990年   466篇
  1989年   443篇
  1988年   354篇
  1987年   344篇
  1986年   266篇
  1985年   286篇
  1984年   156篇
  1983年   161篇
  1982年   99篇
  1981年   85篇
  1980年   60篇
  1979年   77篇
  1977年   59篇
  1975年   56篇
  1974年   52篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 160 毫秒
941.
Wang  Zunxin  Wang  Xianyu  Liu  Siqin  Yang  Ying  Li  Yang  Chen  Siyuan  Wang  Guangpeng  Zhang  Xincheng  Ye  Yuxiu  Hu  Laibao  Zhou  Qing  Wang  Feibing  Chen  Xinhong 《Journal of Plant Growth Regulation》2023,42(1):294-303
Journal of Plant Growth Regulation - Zinc is an important micronutrient for the growth and development of human body and plants. Proper use of nitrogen fertilizer and foliar application of Zn have...  相似文献   
942.
Wang  Chunlei  Wei  Lijuan  Zhang  Jing  Hu  Dongliang  Gao  Rong  Liu  Yayu  Feng  Li  Gong  Wenting  Liao  Weibiao 《Journal of Plant Growth Regulation》2023,42(1):275-293

Salinity impairs plant growth and development, thereby leading to low yield and inferior quality of crops. Nitric oxide (NO) has emerged as an essential signaling molecule that is involved in regulating various physiological and biochemical processes in plants. In this study, tomato seedlings of Lycopersicum esculentum L. “Micro-Tom” treated with 150 mM sodium chloride (NaCl) conducted decreased plant height, total root length, and leaf area by 25.43%, 24.87%, and 33.67%, respectively. While nitrosoglutathione (GSNO) pretreatment ameliorated salt toxicity in a dose-dependent manner and 10 µM GSNO exhibited the most significant mitigation effect. It increased the plant height, total root length, and leaf area of tomato seedlings, which was 31.44%, 20.56%, and 51.21% higher than NaCl treatment alone, respectively. However, NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide potassium (cPTIO) treatment reversed the positive effect of NO under salt stress, implying that NO is essential for the enhancement of salt tolerance. Additionally, NaCl?+?GSNO treatment effectively decreased O2? production and H2O2 content, increased the levels of soluble sugar, glycinebetaine, proline, and chlorophyll, and enhanced the activities of antioxidant enzymes and the content of antioxidants in tomato seedlings in comparison with NaCl treatment, whereas NaCl?+?cPTIO treatment significantly reversed the effect of NO under salt stress. Moreover, we found that GSNO treatment increased endogenous NO content, S-nitrosoglutathione reductase (GSNOR) activity, GSNOR expression and total S-nitrosylated level, and decreased S-nitrosothiol (SNO) content under salt stress, implicating that S-nitrosylation might be involved in NO-enhanced salt tolerance in tomatoes. Altogether, these results suggest that NO confers salt tolerance in tomato seedlings probably by the promotion of photosynthesis and osmotic balance, the enhancement of antioxidant capability and the increase of protein S-nitrosylation levels.

  相似文献   
943.
Xia  Jun  Hao  Xianzhe  Wang  Tangang  Li  Huiqin  Shi  Xiaojuan  Liu  Yongchang  Luo  Honghai 《Journal of Plant Growth Regulation》2023,42(1):319-334
Journal of Plant Growth Regulation - Exogenous substances play an important role in the response of cotton to low-temperature conditions during the germination stage, but little is known about the...  相似文献   
944.
Li  Zhiyuan  Jiang  Hong  Liang  Zhiguo  Wang  Zepeng  Jiang  Xiumei  Qin  Yong 《Journal of Plant Growth Regulation》2023,42(2):922-934

This study examined the effects of nitrogen (N) fertilizer reduction on the carbon (C) metabolism and yield of Coreopsis tinctoria. A two-year (2020–2021) hydroponic experiment was conducted in accordance with a randomized complete group design with five N levels [0.875 mM Ca(NO3)2 (N1), 1.750 mM Ca(NO3)2 (N2), 3.500 mM Ca(NO3)2 (N3), 7.000 mM Ca(NO3)2 (N4), and 14.000 mM Ca(NO3)2 (N5)] and three replications. The results showed that low N significantly affected the functional leaf weight, C metabolism, and flower bud (or flower) numbers of C. tinctoria at harvest. Lower-N levels, especially those of the N2 treatment, significantly increased Rubisco, sucrose synthase (SS), sucrose phosphate synthase (SPS), soluble acid invertase (SAI), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH) activity and maintained the flower number of C. tinctoria. In addition, the balance of carbohydrates (sucrose, starch, glucose, and fructose) and ATP contents was more efficiently maintained under relatively low-N levels. These findings might suggest that reduced application of N fertilizer affects the C metabolism of leaves and maintains the number of flowers in Coreopsis tinctoria. Applying relatively low-N fertilizer levels is also a promising cultivation strategy for C. tinctoria.

  相似文献   
945.
Zhang  Yi  Liang  Yi  Han  Jing  Hu  Xiaohui  Li  Xiaojing  Zhao  Hailiang  Bai  Longqiang  Shi  Yu  Ahammed  Golam Jalal 《Journal of Plant Growth Regulation》2023,42(1):376-389
Journal of Plant Growth Regulation - Photoperiod and micronutrient iron (Fe) are critical for plant growth and development. However, the interactive effects of Fe nutrition and photoperiod on...  相似文献   
946.

Low-temperature and high humidity are typical environmental factors in the plastic tunnel and solar greenhouse during the cold season that restricts plant growth and development. Herein, we investigated the impact of different combinations of low-temperature and high humidity (day/night: T1 15/10 °C?+?95%, T2 12/8 °C?+?95%, and T3 9/5 °C?+?95%) along with a control (CK 25/18 °C?+?80%) on cucumber cultivars viz: Zhongnong37 (ZN37: resistant) and Shuyanbailv (SYB: sensitive). The low-temperature and high humidity stresses increased electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) and intercellular concentration of carbon dioxide (Ci), and reduced morphological indices, relative water content (RWC), net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (E) and leaf pigments in both cultivars as compared to control (CK). Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were decreased in cv. SYB under stress conditions as compared to cv. ZN37. Low-temperature and high humidity treatments showed an increase in proline and soluble protein content in cv. ZN37 as compared to cv. SYB. Abscisic acid (ABA) and jasmonic acid (JA) were augmented while indole-3-acetic acid (IAA), zeatin (ZT), zeatin riboside (ZR), and gibberellic acid (GA) were decreased in both cultivars. Under T3 (9/5 °C?+?95%), Pn, protoporphyrin, and ZT were extremely decreased by 71.3%, 74.3%, and 82.4%, respectively, in cv. SYB compared to control. Moreover, principal component analysis (PCA) based on physiochemical traits confirmed that cv. ZN37 had the strongest correlation with antioxidant enzymes, proline, and soluble protein content than cv. SYB under low-temperature and high humidity treatments. Our results suggest that a stress-tolerant cultivar mitigates stress damage in cucumber transplants by regulating photosynthetic efficiency, antioxidant capacity and hormonal profile when compared to a stress-sensitive cultivar.

  相似文献   
947.
948.
Effah  Zechariah  Li  Lingling  Xie  Junhong  Liu  Chang  Xu  Aixia  Karikari  Benjamin  Anwar  Sumera  Zeng  Min 《Journal of Plant Growth Regulation》2023,42(2):1120-1133

It is critical for spring wheat (Triticum aestivum L.) production in the semi-arid Loess Plateau to understand the impact of nitrogen (N) fertilizer on changes in N metabolism, photosynthetic parameters, and their relationship with grain yield and quality. The photosynthetic capacity of flag leaves, dry matter accumulation, and N metabolite enzyme activities from anthesis to maturity were studied on a long-term fertilization trial under different N rates [0 kg ha?1(N1), 52.5 kg ha?1 (N2), 105 kg ha?1 (N3), 157.5 kg ha?1 (N4), and 210 kg ha?1 (N5)]. It was observed that N3 produced optimum total dry matter (5407 kg ha?1), 1000 grain weight (39.7 g), grain yield (2.64 t ha?1), and protein content (13.97%). Our results showed that N fertilization significantly increased photosynthetic parameters and N metabolite enzymes at all growth stages. Nitrogen harvest index, partial productivity factor, agronomic recovery efficiency, and nitrogen agronomic efficiency were decreased with increased N. Higher N rates (N3–N5) maintained higher photosynthetic capacity and dry matter accumulation and lower intercellular CO2 content. The N supply influenced NUE by improving photosynthetic properties. The N3 produced highest chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate, grain yield, grain protein, dry matter, grains weight, and N metabolite enzyme activities compared to the other rates (N1, N2, N4, and N5). Therefore, increasing N rates beyond the optimum quantity only promotes vegetative development and results in lower yields.

  相似文献   
949.

Water stress is one of the most important factors limiting sustainable crop production. Therefore, the effects of the plant growth regulators (PGRs) fulvic acid (FA), brassinolide (BR), and uniconazole (Uni) on seedling growth and physiology of two maize (Zea mays L.) varieties were evaluated under???0.7 MPa water stress induced by polyethylene glycol-6000. Under drought stress, the PGRs promoted seedling growth, altered the root-to-shoot ratio, and significantly increased root biomass, length, surface area, diameter, and volume. In addition, depending on the PGR, net photosynthesis rate, SPAD value (indicating chlorophyll content), and water use efficiency increased significantly, under drought stress, whereas transpiration rate decreased. The PGRs also significantly increased antioxidant enzyme activities and significantly decreased malondialdehyde accumulation in leaves and roots under drought stress. Zhengdan958 showed greater variation in physiological responses and stronger drought resistance than Xundan20. In alleviating drought stress in maize seedlings, FA had the greatest effects on shoot growth and leaf physiology; Uni exerted its effects by regulating root structure, and BR effects were intermediate. Under drought stress, the three PGRs increased maize seedling growth, which reduced drought stress-induced damage and improved plant ability to resist the adversity. Based on a comprehensive analysis of physiological indices of drought resistance, Uni is recommended as the best PGR to improve maize seedlings resistance to drought.

  相似文献   
950.
As one of the common and serious chronic complications of diabetes mellitus (DM), the related mechanism of diabetic retinopathy (DR) has not been fully understood. Müller cell reactive gliosis is one of the early pathophysiological features of DR. Therefore, exploring the manner to reduce diabetes-induced Müller cell damage is essential to delay DR. Thioredoxin 1 (Trx1), one of the ubiquitous redox enzymes, plays a vital role in redox homeostasis via protein–protein interactions, including apoptosis signal-regulating kinase 1 (ASK1). Previous studies have shown that upregulation of Trx by some drugs can attenuate endoplasmic reticulum stress (ERS) in DR, but the related mechanism was unclear. In this study, we used DM mouse and high glucose (HG)-cultured human Müller cells as models to clarify the effect of Trx1 on ERS and the underlying mechanism. The data showed that the diabetes-induced Müller cell damage was increased significantly. Moreover, the expression of ERS and reactive gliosis was also upregulated in diabetes in vivo and in vitro. However, it was reversed after Trx1 overexpression. Besides, ERS-related protein expression, reactive gliosis, and apoptosis were decreased after transfection with ASK1 small-interfering RNA in stable Trx1 overexpression Müller cells after HG treatment. Taken together, Trx1 could protect Müller cells from diabetes-induced damage, and the underlying mechanism was related to inhibited ERS via ASK1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号