首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175320篇
  免费   13856篇
  国内免费   13458篇
  2024年   218篇
  2023年   1909篇
  2022年   3410篇
  2021年   8280篇
  2020年   5738篇
  2019年   7069篇
  2018年   6878篇
  2017年   5135篇
  2016年   7240篇
  2015年   10556篇
  2014年   12377篇
  2013年   13396篇
  2012年   16054篇
  2011年   14542篇
  2010年   9018篇
  2009年   8167篇
  2008年   9290篇
  2007年   8452篇
  2006年   7385篇
  2005年   6077篇
  2004年   5127篇
  2003年   4563篇
  2002年   3946篇
  2001年   3301篇
  2000年   3127篇
  1999年   2948篇
  1998年   1787篇
  1997年   1754篇
  1996年   1690篇
  1995年   1507篇
  1994年   1409篇
  1993年   1057篇
  1992年   1489篇
  1991年   1147篇
  1990年   969篇
  1989年   804篇
  1988年   671篇
  1987年   647篇
  1986年   500篇
  1985年   523篇
  1984年   325篇
  1983年   299篇
  1982年   212篇
  1981年   162篇
  1980年   125篇
  1979年   178篇
  1977年   121篇
  1975年   101篇
  1974年   107篇
  1973年   119篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
91.
92.
93.
Colistin is one of the antibiotics of last resort for human health. However, the dissemination of the plasmid-mediated colistin resistance gene mcr-1 is of great concern globally. In the One Health framework, the environment is an important component for managing antimicrobial resistance. However, little information is available concerning the prevalence of mcr-1 in water environments. We aimed to reveal the prevalence of mcr-1 in different water environments in Hanoi, Vietnam. Quantitative PCR was applied to detect mcr-1 in four urban drainages receiving untreated domestic wastewater, three rivers, five lakes and two groundwater samples. Urban drainages contained higher concentrations of mcr-1, suggesting that urban residents carry the gene. The class 1 integron-integrase gene was identified as a good surrogate of antibiotic resistance genes including mcr-1. A significant correlation was found between the levels of mcr-1 and the human-specific cross-assembly phage, which is an indicator of human faecal pollution. These results indicated that the primary source of mcr-1 in urban water environments is human faeces, which is consistent with the fact that most domestic wastewater is untreated in Hanoi. The control of untreated wastewater is critical for alleviating the spread of mcr-1 in water environments in Vietnam.  相似文献   
94.
95.
We investigated the correlation between the beneficial effect of Lactobacillus acidophilus on gut microbiota composition, metabolic activities, and reducing cow's milk protein allergy. Mice sensitized with β‐lactoglobulin (β‐Lg) were treated with different doses of L. acidophilus KLDS 1.0738 for 4 weeks, starting 1 week before allergen induction. The results showed that intake of L. acidophilus significantly suppressed the hypersensitivity responses, together with increased fecal microbiota diversity and short‐chain fatty acids (SCFAs) concentration (including propionate, butyrate, isobutyrate, and isovalerate) when compared with the allergic group. Moreover, treatment with L. acidophilus induced the expression of SCFAs receptors, G‐protein–coupled receptors 41 (GPR41) and 43 (GPR43), in the spleen and colon of the allergic mice. Further analysis revealed that the GPR41 and GPR43 messenger RNA expression both positively correlated with the serum concentrations of transforming growth factor‐β and IFN‐γ (p < .05), but negatively with the serum concentrations of IL‐17, IL‐4, and IL‐6 in the L. acidophilus–treated group compared with the allergic group (p < .05). These results suggested that L. acidophilus protected against the development of allergic inflammation by improving the intestinal flora, as well as upregulating SCFAs and their receptors GPR41/43.  相似文献   
96.
97.
We have previously identified two distinct forms of putative viral assembly intermediate complexes, a detergent-resistant complex (DRC) and a detergent-sensitive complex (DSC), in human immunodeficiency virus type 1 (HIV-1)-infected CD4(+) T cells (Y. M. Lee and X. F. Yu, Virology 243:78-93, 1998). In the present study, the intracellular localization of these two viral assembly intermediate complexes was investigated by use of a newly developed method of subcellular fractionation. In wild-type HIV-1-infected H9 cells, the DRC fractionated with the soluble cytoplasmic fraction, whereas the DSC was associated with the membrane fraction. The DRC was also detected in the cytoplasmic fraction in H9 cells expressing HIV-1 Myr- mutant Gag. However, little of the unmyristylated Gag and Gag-Pol proteins was found in the membrane fraction. Furthermore, HIV-1 Gag proteins synthesized in vitro in a rabbit reticulocyte lysate system in the absence of exogenous lipid membrane were able to assemble into a viral Gag complex similar to that of the DRC identified in infected H9 cells. The density of the viral Gag complex was not altered by treatment with the nonionic detergent Triton X-100, suggesting a lack of association of this complex with endogenous lipid. Formation of the DRC was not significantly affected by mutations in assembly domains M and L of the Gag protein but was drastically inhibited by a mutation in the assembly I domain. Purified DRC could be disrupted by high-salt treatment, suggesting electrostatic interactions are important for stabilizing the DRC. The Gag precursor proteins in the DRC were more sensitive to trypsin digestion than those in the DSC. These findings suggest that HIV-1 Gag and Gag-Pol precursors assemble into DRC in the cytoplasm, a process which requires the protein-protein interaction domain (I) in NCp7; subsequently, the DRC is transported to the plasma membrane through a process mediated by the M domain of the matrix protein. It appears that during this process, a conformational change might occur in the DRC either before or after its association with the plasma membrane, and this change is followed by the detection of virus budding structure at the plasma membrane.  相似文献   
98.
Relationships between induced high leaf intercellular CO2 concentrations, leaf K+ and NO3 ? ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO2, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K+, NO3 ? and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009–2010. The experimental treatments consisted of five K2O rates (0, 6, 12, 18, and 24 kg ha?1) and five N rates (0, 5, 10, 15, and 20 kg ha?1), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was ‘Mira’, a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO2 concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K+ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO2 inhibited leaf/fruit NO3 ? ion retention, but this inhibition did not occur in leaf/fruit K+ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO2, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO2 could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO3 ? retention. This inhibition did not find in leaf K+ ion and dissolved solid retention. Overlay co-limitation of leaf intercellular CO2 and translocation of leaf/fruit K+/NO3 ? and total dissolved solids could constrain more fruit formation attributes under full macronutrient supply than reduced inputs. It was suggested that low input would be an optimal and sustainable option for improving small fruit crop physiological development and dealing with macronutrient deficiency challenge.  相似文献   
99.
100.
We used a N-biotinylated peptide analog of the C-terminal domain of the tumor suppressor protein, p21cip1/waf1 to elucidate peptide/protein interacting partners. The C-terminal domain of p21cip1/waf1 protein spanning 141-160 amino acid residues is known to bind PCNA and this interaction is important in many biological processes including cell-cycle control. This C-terminal 20-mer efficiently extracts PCNA in the presence of a variety of N- or C-terminally attached affinity tags. Using difference silver stained 2D gels combined with in-gel tryptic digests, we identified the difference spots using MALDI-TOF mass spectrometry-based peptide mass fingerprinting followed by a database search using PROFOUND against NCBIs human nonredundant protein sequence data bank. Identified spots include the p48 subunit of chromatin assembly factor-1, the heat shock 70 protein analog BiP, calmodulin, nucleolin and a spot similar in size to dimeric PCNA. In contrast, microcapillary ion-trap LC-MS/MS analysis of a tryptic digest of entire affinity extracts derived from both control and experimental runs followed by database searches using SEQUEST confirmed the presence of most of the above proteins. This strategy also identified hnRNPA1, HPSP90alpha, HSP40 and T-complex protein 1, a protein similar to prothymosin, and a possible allelic variant of the p21cip1/waf1 protein. The use of N-biotinylated peptide derived from the C-terminal domain of p21cip1/waf1 protein in proteomic analysis exemplified here suggests that peptides obtained from intracellular functional screens could also potentially serve as efficient baits to discover new drug targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号