首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   97篇
  677篇
  2022年   6篇
  2021年   10篇
  2019年   6篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   25篇
  2014年   14篇
  2013年   26篇
  2012年   29篇
  2011年   23篇
  2010年   8篇
  2009年   14篇
  2008年   15篇
  2007年   21篇
  2006年   19篇
  2005年   23篇
  2004年   24篇
  2003年   28篇
  2002年   20篇
  2001年   8篇
  1999年   7篇
  1998年   8篇
  1996年   8篇
  1995年   11篇
  1994年   6篇
  1992年   15篇
  1991年   7篇
  1990年   6篇
  1988年   8篇
  1987年   7篇
  1985年   9篇
  1984年   7篇
  1983年   6篇
  1979年   7篇
  1978年   7篇
  1976年   6篇
  1973年   6篇
  1971年   10篇
  1970年   9篇
  1969年   9篇
  1967年   8篇
  1966年   10篇
  1965年   5篇
  1964年   6篇
  1959年   9篇
  1956年   5篇
  1954年   6篇
  1953年   5篇
  1952年   8篇
排序方式: 共有677条查询结果,搜索用时 0 毫秒
21.
Staves MP  Wayne R  Leopold AC 《Protoplasma》1992,168(3-4):141-152
Summary Hydrostatic pressure applied to one end of a horizontalChara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.  相似文献   
22.
An assessment of phase transitions in soybean membranes   总被引:3,自引:2,他引:1       下载免费PDF全文
Phase transitions were measured in vesicles of phospholipids, alone and in various combinations, and in pelleted mitochondrial membranes, using thermal (DSC) and optical methods. The objective was to consider their possible involvement in chilling injury of soybeans (Glycine max [L.] Merr. cv Wayne 1977). Saturated phospholipids showed clear transitions in the temperature range of 50°C to near 0°C. When mixtures of two phospholipids were examined, there was a marked lowering and broadening of the transition peaks, and a shift in the transition temperatures to intermediate temperatures. The unsaturated phospholipids that occur naturally in soybeans showed no detectable phase transitions in this temperature range, alone or in combinations. Examination of the polar lipids from soybean asolectin revealed no transitions in the biological temperature range; the additions of cations such as Ca2+ and La3+ did not evoke a detectable phase transition in them. Mitochondrial membrane pellets likewise showed no transitions. The application of these two direct methods of examination of membrane components without the addition of foreign agents did not support the suggested occurrence of a bulk phase transition which could be related to chilling injury in soybeans.  相似文献   
23.
Solute leakage resulting from leaf desiccation   总被引:10,自引:5,他引:5       下载免费PDF全文
The leakage of solutes from foliar tissue is utilized as a dynamic measure of apparent changes in membrane integrity in response to desiccation. It is found that rehydrating leaf discs of cowpea (Vigna sinensis [L.] Endl.) show increasing leakiness in proportion to the extent of prior desiccation, whereas Selaginella lepidophylla Spring., a resurrection plant, does not. The elevated leakage rate of cowpea after desiccation recovers with time, and the passage of time in the stressed condition results in reduced subsequent leakiness. These characteristics are interpreted as suggesting that the leakage of solute reflects the condition of cellular membranes, and that desiccation stress leads to lesions in the membranes. The kinetics of solute leakage is suggested as a simple means of following changes in membrane lesions and associated features of membrane repair and hardening.  相似文献   
24.
Effects of inorganic solutes on the binding of auxin   总被引:5,自引:5,他引:0       下载免费PDF全文
The binding of α-naphthaleneacetic acid (14C-NAA) to pelletable particulates from corn (Zea mays) coleoptiles was found to be influenced by inorganic solutes. La3+, Ca2+, and Mg2+ increased the binding whereas monovalent cations did not. The concentrations of CaCl2 which increased auxin binding were similar to those which inhibited coleoptile elongation in the presence of auxin. These results are interpreted as suggesting that the alteration of hormonal effectiveness by some inorganic solutes involves alterations in the attachment of the hormone to binding sites in the cell.  相似文献   
25.
Inorganic solutes are shown to alter the permeability of root and leaf tissues. Experiments with beet root tissues reveal that CaCl(2) decreases leakage of betacyanin from the tissue, that (NH(4))(2)SO(4) increases leakage, and that each salt can relieve the effects of the other. A comparison of cations and anions shows a range of effects with the various solutes. Experiments with Rumex obtusifolius L. leaf discs reveal that whereas CaCl(2) defers the development of senescence, (NH(4))(2)SO(4) hastens senescence and increases the leakage of materials out of the leaf discs. The solute effect on Rumex obtusifolius L. is prevented by gibberellin. CaCl(2) can relieve the (NH(4))(2)SO(4) effect. The results are interpreted as indicating that the inorganic solutes may serve to alter the permeability of membranes through alterations of interactions between water and macromolecules in the tissues; the interpretation is consistent with the evidence for opposite effects of Ca and NH(4), the effective concentrations being about 10(-3)m, and the reversibility of the effects of one solute by another of opposite stabilization-destabilization effect.  相似文献   
26.
Genetic data were used to compare the structure of native house fly populations collected in North Dakota, Texas, and Florida. Recombination studies with mutant markers on chromosomes 3 and 4 indicated a lack of inversion polymorphism among the three populations in those areas of the genetic map studied. Significant differences were observed among flies from the three regions with regard to the frequency of 1) females that produced only male progeny, and 2) male-determining 3rd chromosomes (IIIm chromosomes). However, the North Dakota and Texas flies were more similar to each other than to the Florida flies since populations from the two former areas possessed a low frequency of both male-producing females and IIIm chromosomes; in contrast, the Florida population was void of females that produced males only and a high percentage if not all Florida males appeared to possess the IIIm male-determining mechanism. Tests for recessive lethal 3rd chromosomes showed that there was no significant difference in the frequency of lethal factors recovered from the North Dakota and Texas flies; the presence of IIIm chromosomes in Florida males precluded the recovery of lethal factors from this population by the method employed. The data suggest that house fly strains to be employed in genetic control programs should 1) originate from target control areas to avoid possible behavioral differences existing among flies from different locales, 2) be initiated with as many flies as possible to provide a background for the maintenance of variability, and 3) be renewed periodically with field-collected material since the genotype may be capable of rapid reorganization in response to laboratory selection pressures.  相似文献   
27.
Respiratory Transition during Seed Germination   总被引:10,自引:14,他引:10       下载免费PDF全文
Experiments with germinating seeds of Wayne soybean (Glycine max Merr.) show that between the 4th and the 8th hour of germination, respiration experiences a transition from predominantly “alternate” respiration, which is sensitive to salicylhydroxamic acid, to a cyanide-sensitive respiration. The dependence of early germination stages on alternate respiration is reflected in several types of seed functions, including subsequent root growth rate, chlorophyll synthesis, and germination itself. The early period of germination is shown to require a normal O2 tension, which is no longer a requirement at later stages. The changing sensitivity to cyanide and to salicylhydroxamic acid is found to be common to seven different types of germinating seeds. It is proposed that the alternate pathway of respiration provides something essential for the completion of the earliest stages of seed germination.  相似文献   
28.
Phytochelatins and heavy metal tolerance   总被引:3,自引:0,他引:3  
The induction and heavy metal binding properties of phytochelatins in heavy metal tolerant (Silene vulgaris) and sensitive (tomato) cell cultures, in water cultures of these plants and in Silene vulgaris grown on a medieval copper mining dump were investigated. Application of heavy metals to cell suspension cultures and whole plants of Silene vulgaris and tomato induces the formation of heavy metal–phytochelatin-complexes with Cu and Cd and the binding of Zn and Pb to lower molecular weight substances. The binding of heavy metal ions to phytochelatins seems to play only a transient role in the heavy metal detoxification, because the Cd- and Cu-complexes disappear in the roots of water cultures of Silene vulgaris between 7 and 14 days after heavy metal exposition. Free heavy metal ions were not detectable in the extracts of all investigated plants and cell cultures. Silene vulgaris plants grown under natural conditions on a mining dump synthesize low molecular weight heavy metal binding compounds only and show no complexation of heavy metal ions to phytochelatins. The induction of phytochelatins is a general answer of higher plants to heavy metal exposition, but only some of the heavy metal ions are able to form stable complexes with phytochelatins. The investigation of tolerant plants from the copper mining dump shows that phytochelatins are not responsible for the development of the heavy metal tolerant phenotypes.  相似文献   
29.
At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008-2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect - inhibition of above-ground growth rate - was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO(3) (-) in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO(2) concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place.  相似文献   
30.
Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号