首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   37篇
  2021年   2篇
  2016年   5篇
  2015年   5篇
  2014年   9篇
  2013年   6篇
  2012年   8篇
  2011年   20篇
  2010年   9篇
  2009年   3篇
  2008年   9篇
  2007年   9篇
  2006年   5篇
  2005年   10篇
  2004年   9篇
  2003年   4篇
  2002年   15篇
  2001年   11篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   8篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   8篇
  1983年   3篇
  1981年   3篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   5篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   4篇
  1970年   6篇
  1969年   6篇
  1967年   10篇
  1966年   2篇
  1965年   4篇
  1964年   2篇
  1960年   1篇
  1954年   1篇
  1952年   1篇
排序方式: 共有283条查询结果,搜索用时 203 毫秒
51.
The rapid development of agricultural biotechnology and release of new transgenic plants for agriculture has provided many economic benefits, but has also raised concern over the potential impact of transgenic plants on the environment. Considerable research has now been conducted on the effects of transgenic plants on soil microorganisms. These effects include unintentional changes in the chemical compositions of root exudates, and the direct effects of transgenic proteins on nontarget species of soil microorganisms. Most studies to date suggest that transgenic plants that have been released cause minor changes in microbial community structures that are often transient in duration. However, due to our limited knowledge of the linkage between microbial community structure and function, more work needs to be done on a case-by-case basis to further evaluate the effects of transgenic plants on soil microorganisms and soil ecosystem functions. This review summarizes the results of a variety of experiments that have been conducted to specifically test the effects of transgenic plants on soil microorganisms, and particularly examines the types of methods that are being used to study microbial interactions with transgenic plants.  相似文献   
52.
53.
In this study, the fungistatic activity of Bacillus cereus cereulide-producing strains was demonstrated against nine fungal species. The role of cereulide was confirmed using plasmid-cured derivatives and ces knockout mutants. The fungistatic spectra of cereulide and valinomycin, a chemically related cyclododecadepsipeptide, were also compared and found to be similar but distinct.  相似文献   
54.
Group A rotavirus is a major leading cause of diarrhea in mammalian species worldwide. In Argentina, bovine rotavirus (BRV) is the main cause of neonatal diarrhea in calves. VP4, one of the outermost capsid proteins, is involved in various virus functions. Rotavirus infectivity requires proteolytic cleavage of VP4, giving an N-terminal non-glycosilated sialic acid-recognizing domain (VP8*), and a C-terminal fragment (VP5*) that remains associated with the virion. VP8* subunit is the major determinant of the viral infectivity and one of the neutralizing antigens.In this work, the C486 BRV VP8* protein was produced in tobacco chloroplasts. Transplastomic plants were obtained and characterized by Southern blot, northern blot and western blot. VP8* was highly stable in the transplastomic leaves, and formed insoluble aggregates that were partially solubilized by sonication. The recombinant protein yield was 600 μg/g of fresh tissue (FT). Both the soluble and insoluble fractions of the VP8* plant extracts were able to induce a strong immune response in female mice as measured by ELISA and virus neutralization test. Most important, suckling mice born to immunized dams were protected against oral challenge with virulent rotavirus. Results presented here contribute to demonstrate the feasibility of using antigens expressed in transplastomic plants for the development of subunit vaccines.  相似文献   
55.
Although implied by other models, proof that Langerhans cells (LCs) in the human vagina participate in dissemination of infectious human immunodeficiency virus type 1 (HIV-1) has been lacking. Here, we show that LCs migrate from HIV-1-exposed vaginal epithelia and pass infectious virus to CD4+ T cells without being productively infected themselves, and we point to a pathway that might enable HIV-1 to avoid degradation in vaginal LCs. Transport by migratory LCs to local lymphatics in a nonproductive but infectious form may aid HIV-1 in evasion of topical microbicides that target its intracellular productive life cycle.  相似文献   
56.
Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (K(d) = ~10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60-70% functional prothrombinase complex at saturating factor Va concentrations. Although reduced interfacial packing does contribute to factor Va binding in the absence of PS, it does not correlate with the enhanced activity of the Xa-Va complex assembled on PE-containing membranes. Instead, specific protein-PE interactions appear to contribute to the effects of PE. In support of this, soluble C6PE binds to recombinant factor Va(2) (K(d) = ~6.5 μm) and to factor Xa (K(d) = ~91 μm). C6PE and C6PS binding sites of factor Xa are specific, distinct, and linked, because binding of one lipid enhances the binding and activity effects of the other. C6PE triggers assembly (K(d)(app) = ~40 nm) of a partially active prothrombinase complex between factor Xa and factor Va(2), compared with K(d)(app) for C6PS ~2 nm. These findings provide new insights into the possible synergistic roles of platelet PE and PS in regulating thrombin formation, particularly when exposed membrane PS may be limiting.  相似文献   
57.
Human papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death in women worldwide, and its E7 antigen is the major candidate for a therapeutic vaccine. The large scale production of E7 by molecular farming that would lead to the development of a safe and inexpensive vaccine is impaired by its low accumulation level in the plant cell. To enhance antigen production in the plastids, two alternative strategies were carried out: the expression of E7 as a translational fusion to β-glucuronidase enzyme and redirection of E7 into the thylakoid lumen. The use of the β-glucuronidase as a partner protein turned out to be a successful strategy, antigen expression levels were enhanced between 30 and 40 times relative to unfused E7. Moreover, best accumulation, albeit at a high metabolic cost that compromised biomass production, was obtained redirecting E7 into the thylakoid lumen by the incorporation of the N-terminal transit peptide, Str. Following this approach lumenal E7 production exceeded the stromal by two orders of magnitude. Our results highlight the relevance of exploring different strategies to improve recombinant protein stability for certain transgenes in order to exploit potential advantages of recombinant protein accumulation in chloroplasts.  相似文献   
58.
Mitochondria are key regulators of cellular energy and mitochondrial biogenesis is an essential component of regulating mitochondria numbers in healthy cells1-3. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication4. We developed a sensitive technique to label newly synthesized mtDNA in individual cells in order to study mtDNA biogenesis. The technique combines the incorporation of 5-ethynyl-2''-deoxyuridine (EdU)5-7 with a tyramide signal amplification (TSA)8 protocol to visualize mtDNA replication within subcellular compartments of neurons. EdU is superior to other thymidine analogs, such as 5-bromo-2-deoxyuridine (BrdU), because the initial click reaction to label EdU5-7 does not require the harsh acid treatments or enzyme digests that are required for exposing the BrdU epitope. The milder labeling of EdU allows for direct comparison of its incorporation with other cellular markers9-10. The ability to visualize and quantify mtDNA biogenesis provides an essential tool for investigating the mechanisms used to regulate mitochondrial biogenesis and would provide insight into the pathogenesis associated with drug toxicity, aging, cancer and neurodegenerative diseases. Our technique is applicable to sensory neurons as well as other cell types. The use of this technique to measure mtDNA biogenesis has significant implications in furthering the understanding of both normal cellular physiology as well as impaired disease states.  相似文献   
59.
60.
E1 is the largest open reading frame (ORF) of bovine papillomavirus type 1 (BPV-1) and is highly conserved among all papillomaviruses, maintaining its size, amino acid composition, and location in the viral genome with respect to other early genes. Multiple viral replication functions have been mapped to the E1 ORF of BPV-1, and evidence suggested that more than one protein was encoded by this ORF. We previously identified a small protein (M) whose gene consists of two exons, one encoded by the 5' end of the E1 ORF. We show here that a 68-kilodalton (kDa) phosphoprotein made from the E1 ORF can be detected in BPV-1-transformed cells, and we present evidence that this protein is encoded by sequences colinear with the entire E1 ORF. The full-length E1 protein immunoprecipitated from virally transformed cells and identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis comigrates with a protein expressed from a recombinant DNA construct capable of producing only the complete E1 protein. In addition, two different antisera directed against polypeptides encoded from either the 3' or the 5' end of the E1 ORF both recognize the full-length E1 product. A mutation converting the first methionine codon in the ORF to an isoleucine codon abolishes BPV-1 plasmid replication and E1 protein production. Consistent with the notion that this methionine codon is the start site for E1, a mutant with a termination codon placed after the splice donor at nucleotide 1235 in E1 produces a truncated protein with the molecular mass predicted from the primary sequence as well as the previously identified M protein. When visualized by immunostaining, the E1 protein expressed in COS cells is localized to the cell nucleus. A high degree of similarity exists between the BPV-1 E1 protein and polyomavirus and simian virus 40 large-T antigens in regions of the T antigens that bind ATP. We show by ATP affinity labeling that the E1 protein produced in COS cells binds ATP and that this activity is abolished by a point mutation which converts the codon for proline 434 to serine. Furthermore, this mutation renders the viral genome defective for DNA replication, suggesting that the ATP-binding activity of E1 is necessary for its putative role in viral DNA replication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号