首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   53篇
  2021年   3篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   15篇
  2014年   16篇
  2013年   17篇
  2012年   17篇
  2011年   25篇
  2010年   17篇
  2009年   27篇
  2008年   26篇
  2007年   28篇
  2006年   28篇
  2005年   20篇
  2004年   18篇
  2003年   10篇
  2002年   18篇
  2001年   10篇
  2000年   22篇
  1999年   19篇
  1998年   5篇
  1997年   4篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   8篇
  1991年   16篇
  1990年   3篇
  1989年   8篇
  1988年   12篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   10篇
  1982年   6篇
  1981年   3篇
  1979年   5篇
  1977年   4篇
  1976年   4篇
  1974年   5篇
  1972年   4篇
  1971年   5篇
  1970年   4篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
排序方式: 共有531条查询结果,搜索用时 218 毫秒
101.
102.
103.
NanoLC-MS/MS analysis was used to characterize the phosphorylation pattern in vivo of CDC25B3 (phosphatase splice variant 1) expressed in a human cell line and to compare it to the phosphorylation of CDC25B3 by Cdk1/cyclin B and Chk1 in vitro. Cellular CDC25B3 was purified from U2OS cells conditionally overexpressing the phosphatase. Eighteen sites were detectably phosphorylated in vivo. Nearly all existing (S/T)P sites were phosphorylated in vivo and in vitro. Eight non(S/T)P sites were phosphorylated in vivo. All these sites could be phosphorylated by kinase Chk1, which phosphorylated a total of 11 sites in vitro, with consensus sequence (R/K) X(2-3) (S/P)-non P. Nearly half of the sites identified in this study were not previously described and were not homologous to sites reported to be phosphorylated in other CDC25 species. We also show that in vivo a significant part of CDC25B molecules can be hyperphosphorylated, with up to 13 phosphates per phosphatase molecule.  相似文献   
104.
A common technique for the long-term storage of tissues in hospitals and clinical laboratories is preservation in formalin-fixed paraffin-embedded (FFPE) blocks. Such tissues stored for more than five years have not been useful for proteomic studies focused on biomarker discovery. Recently, MS-based proteomic analyses of FFPE showed positive results on blocks stored for less than 2 days. However, most samples are stored for more than one year, and thus our objective was to establish a novel strategy using as a model system 6-hydroxydopamine (6-OHDA) treated rat brain tissues stored in FFPE blocks for more than 9 years. We examined MALDI tissue profiling combining the use of automatic spotting of the MALDI matrix with in situ tissue enzymatic digestion. On adjacent sections, the identification of compounds is carried out by tissue digestion followed by nanoLC/MS-MS analysis. The combination of these approaches provides MALDI direct analysis, MALDI/MS imaging, as well as the localization of a large number of proteins. This method is validated since the analyses confirmed that ubiquitin, trans-elongation factor 1, hexokinase, and the Neurofilament M are down-regulated as previously shown in human or Parkinson animal models. In contrast, peroxidoredoxin 6, F1 ATPase, and alpha-enolase are up-regulated. In addition, we uncovered three novel putative biomarkers, the trans-elongation factor 1 (eEF1) and the collapsin response mediator 1 and 2 from protein libraries. Finally, we validate the CRMP-2 protein using immunocytochemistry and MALDI imaging based on the different ions from trypsic digestion of the protein. The access to archived FFPE tissue using MALDI profiling and imaging opens a whole new area in clinical studies and biomarker discovery from hospital biopsy libraries.  相似文献   
105.
A series of OX(2)R/OX(1)R dual orexin antagonists was prepared based on a proline bis-amide identified as a screening lead. Through a combination of classical and library synthesis, potency enhancing replacements for both amide portions were discovered. N-methylation of the benzimidazole moiety within the lead structure significantly reduced P-gp susceptibility while increasing potency, giving rise to good brain penetration. A compound from this series has demonstrated in vivo central activity when dosed peripherally in a pharmacodynamic model of orexin activity.  相似文献   
106.
Ascidian embryos were the first animal embryos to be experimentally manipulated by Man at the end of the 19th century. The mosaic theory of development was born from these experiments and those carried out by Conklin 20 years later. These astonishing animals, some of which are eaten as delicacies in France and other countries, belong to the tunicates, which are the only animals to produce cellulose. They are, however, the closest living relatives to the vertebrates. Neglected throughout most of the 20th century, ascidians have recently come back in the limelight in the wake of the sequencing of the genomes of Ciona intestinalis and Ciona savignyi. These small, unduplicated genomes harbour 16,000 to 20,000 genes and are 20 times smaller than the human genome. Ciona eggs can be microinjected and easily electroporated, which make this system suitable for the study of developmental gene regulatory networks.  相似文献   
107.
Shao N  Beck CF  Lemaire SD  Krieger-Liszkay A 《Planta》2008,228(6):1055-1066
A specific signaling role for H2O2 in Chlamydomonas reinhardtii was demonstrated by the definition of a promoter that specifically responded to this ROS. Expression of a nuclear-encoded reporter gene driven by this promoter was shown to depend not only on the level of exogenously added H2O2 but also on light. In the dark, the induction of the reporter gene by H2O2 was much lower than in the light. This lower induction was correlated with an accelerated disappearance of H2O2 from the culture medium in the dark. Due to a light-induced reduction in catalase activity, H2O2 levels in the light remained higher. Photosynthetic electron transport mediated the light-controlled down-regulation of the catalase activity since it was prevented by 3-(3′4′-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. In the presence of light and DCMU, expression of the reporter gene was low while the addition of aminotriazole, a catalase inhibitor, led to a higher induction of the reporter gene by H2O2 in the dark. The role of photosynthetic electron transport and thioredoxin in this regulation was investigated by using mutants deficient in photosynthetic electron flow and by studying the correlation between NADP-malate dehydrogenase and catalase activities. It is proposed that, contrary to expectations, a controlled down-regulation of catalase activity occurs upon a shift of cells from dark to light. This down-regulation apparently is necessary to maintain a certain level of H2O2 required to activate H2O2-dependent signaling pathways.  相似文献   
108.
109.
Glycine transporter 1 (GlyT1) represents a novel target for the treatment of schizophrenia via the potentiation of glutamatergic NMDA receptors. The discovery of 4,4-disubstituted piperidine inhibitors of GlyT1 which exhibit improved pharmacokinetic properties, including oral bioavailability, is discussed.  相似文献   
110.
Ferredoxin (Fd) is the major iron-containing protein in photosynthetic organisms and is central to reductive metabolism in the chloroplast. The Chlamydomonas reinhardtii genome encodes six plant type [Fe2S2] ferredoxins, products of PETF, FDX2–FDX6. We performed the functional analysis of these ferredoxins by localizing Fd, Fdx2, Fdx3, and Fdx6 to the chloroplast by using isoform-specific antibodies and monitoring the pattern of gene expression by iron and copper nutrition, nitrogen source, and hydrogen peroxide stress. In addition, we also measured the midpoint redox potentials of Fd and Fdx2 and determined the kinetic parameters of their reactions with several ferredoxin-interacting proteins, namely nitrite reductase, Fd:NADP+ oxidoreductase, and Fd:thioredoxin reductase. We found that each of the FDX genes is differently regulated in response to changes in nutrient supply. Moreover, we show that Fdx2 (Em = −321 mV), whose expression is regulated by nitrate, is a more efficient electron donor to nitrite reductase relative to Fd. Overall, the results suggest that each ferredoxin isoform has substrate specificity and that the presence of multiple ferredoxin isoforms allows for the allocation of reducing power to specific metabolic pathways in the chloroplast under various growth conditions.Ferredoxins are small (∼11,000-kDa), soluble, iron-sulfur cluster-containing proteins with strongly negative redox potentials (−350 to −450 mV) that function as electron donors at reductive steps in various metabolic pathways (13). In photosynthetic organisms, the well studied ferredoxin (Fd4; the product of the PETF gene) is the most abundant iron-containing protein in the chloroplast and is central to the distribution of photosynthetically derived reductive power (4).The most well known Fd-dependent reaction is the transfer of electrons from photosystem I (PSI) to NADPH, catalyzed by Fd:NADP+ oxidoreductase (FNR). The NADPH produced by this reaction donates electrons to the only reductant-requiring step in the Calvin cycle and other steps in anabolic pathways that require NADPH as reductant. In addition, reduced Fd directly donates electrons to other metabolic pathways by interacting with various enzymes in the chloroplast. This includes Fd:thioredoxin reductase (FTR), which converts a light-driven electron signal into a thiol signal that is transmitted to thioredoxins (TRXs) present in the plastid as different types (or different isoforms). Once reduced, TRXs interact with specific disulfide bonds on target enzymes, modulating their activities (5). Other Fd targets include hydrogenase, which is responsible for hydrogen production in anaerobic conditions in green algae; glutamine-oxoglutarate amidotransferase in amino acid synthesis; nitrite and sulfite reductases in nitrate and sulfate assimilation, respectively; stearoyl-ACP Δ9-desaturase in fatty acid desaturation; and phycocyanobilin:Fd oxidoreductase in synthesis of phytochromobilin (6). Fd also functions in non-photosynthetic cells. Here, FNR catalyzes the reduction of Fd by NADPH produced in the oxidative pentose phosphate pathway, enabling Fd-dependent metabolism to occur in the dark (7, 8).The single-celled green alga, Chlamydomonas reinhardtii is an excellent reference organism for studying both metabolic adaptation to nutrient stress and photosynthesis (913). The Chlamydomonas genome encodes six highly related plant type ferredoxin genes (9). Until recently, only the major photosynthetic ferredoxin, Fd (encoded by PETF), which mediates electron transfer between PSI and FNR, had been characterized in detail (14).Many land plants are known to have multiple ferredoxins. Typically, they are differently localized on the basis of their function. Photosynthetic ferredoxins reduce NADP+ at a faster rate and are localized to the leaves, whereas non-photosynthetic ferredoxins are more efficiently reduced by NADPH and are localized to the roots. Arabidopsis thaliana has a total of six ferredoxin isoforms (15). Of these, two are photosynthetic and localized in the leaves. The most abundant, AtFd2, is involved in linear electron flow, and the less abundant (5% of the ferredoxin pool), AtFd1, has been implicated in cyclic electron flow (16). There is one non-photosynthetic ferredoxin located in the roots, AtFd3, which is nitrate-inducible. This protein has higher electron transfer activity with sulfite reductase in in vitro assays compared with other Arabidopsis ferredoxin isoforms, suggesting in vivo function of AtFd3 in nitrate and sulfate assimilation (15, 17). In addition, there is one evolutionarily distant ferredoxin, AtFd4, of unknown function with a more positive redox potential present in the leaves and two other proteins which are “ferredoxin-like” and uncharacterized (15). Zea mays has four ferredoxin isoforms, two photosynthetic and two non-photosynthetic (18). One of the non-photosynthetic isoforms is specifically induced by nitrite, suggestive of a role in nitrate metabolism (19). A cyanobacterium, Anabaena 7120, has two ferredoxins, vegetative and heterocyst type (by analogy to leaf and root types, respectively). The heterocyst type is present only in cells that have differentiated into nitrogen-fixing cells, indicating that this form may serve to transfer electrons to nitrogenase (20).We hypothesize that the presence of as many as six ferredoxin isoforms in a single-celled organism like C. reinhardtii allows for the differential regulation of each isoform and therefore the prioritization of reducing power toward certain metabolic pathways under changing environmental conditions. To test this hypothesis, expression of the genes (PETF and FDX2–FDX6) encoding the six ferredoxin isoforms in Chlamydomonas reinhardtii was monitored under various conditions in which well characterized ferredoxin-dependent enzymes are known to be expressed. In addition, we also analyzed the interaction of Fd and Fdx2 with several ferredoxin-interacting proteins, such as NiR, FNR, and FTR, and determined the kinetic parameters of the corresponding reactions.We found that each of the FDX genes is indeed differently regulated in response to changes in nutrient supply. In the case of FDX2 whose product is most similar to classical Fd, we suggest that it has specificity for nitrite reductase based on its pattern of expression and activity with nitrite reductase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号