首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32374篇
  免费   2782篇
  国内免费   3181篇
  2024年   49篇
  2023年   433篇
  2022年   611篇
  2021年   1759篇
  2020年   1274篇
  2019年   1533篇
  2018年   1497篇
  2017年   1077篇
  2016年   1531篇
  2015年   2143篇
  2014年   2510篇
  2013年   2662篇
  2012年   3264篇
  2011年   3004篇
  2010年   1836篇
  2009年   1576篇
  2008年   1877篇
  2007年   1610篇
  2006年   1381篇
  2005年   1152篇
  2004年   893篇
  2003年   826篇
  2002年   675篇
  2001年   450篇
  2000年   394篇
  1999年   385篇
  1998年   255篇
  1997年   197篇
  1996年   158篇
  1995年   154篇
  1994年   116篇
  1993年   95篇
  1992年   127篇
  1991年   129篇
  1990年   109篇
  1989年   84篇
  1988年   68篇
  1987年   60篇
  1986年   42篇
  1985年   63篇
  1984年   28篇
  1983年   25篇
  1982年   25篇
  1981年   15篇
  1979年   21篇
  1978年   18篇
  1977年   20篇
  1976年   15篇
  1975年   15篇
  1972年   16篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
991.
An accurate solvation model is essential for computer modeling of protein folding and other biomolecular self-assembly processes. Compared to explicit solvent models, implicit solvent models, such as the Poisson-Boltzmann (PB) with solvent accessible surface area model (PB/SA), offer a much faster speed—the most compelling reason for the popularity of these implicit solvent models. Since these implicit solvent models typically use empirical parameters, such as atomic radii and the surface tensions, an optimal fit of these parameters is crucial for the final accuracy of properties such as solvation free energy and folding free energy. In this paper, we proposed a combined approach, namely SD/GA, which takes the advantage of both local optimization with the steepest descent (SD), and global optimization with the genetic algorithm (GA), for parameters optimization in multi-dimensional space. The SD/GA method is then applied to the optimization of solvation parameters in the non-polar cavity term of the PB/SA model. The results show that the newly optimized parameters from SD/GA not only increase the accuracy in the solvation free energies for ~200 organic molecules, but also significantly improve the free energy landscape of a β-hairpin folding. The current SD/GA method can be readily applied to other multi-dimensional parameter space optimization as well.  相似文献   
992.
993.
Parthenogenetic embryos are invariably lost in mid-gestation, possibly due to the lack of the paternal genome and the consequent induction of aberrant gene expression. Wnt signaling is essential for embryonic development; however, the studies of this pathway in porcine parthenogenetic embryos have been limited. Here, the role of Wnt signaling in porcine parthenogenetic embryos was studied. In vivo embryos were used as controls. Single cell quantitative real-time PCR showed that Wnt signaling was down-regulated in porcine parthenogenetic embryos. Furthermore, immunofluorescence staining and real-time PCR demonstrated that porcine parthenogenetic embryo development was largely unaffected by the inhibition of Wnt signaling with IWP-2, but blastocyst hatching and trophectoderm development was blocked. In addition, parthenogenetic blastocyst hatching was improved by the activation of Wnt signaling by BIO. However, the developmental competency of porcine embryos, including blastocyst hatching, was impaired and apoptosis was induced upon the excessive activation of Wnt signaling. These findings constitute novel evidence that Wnt signaling is important for porcine pre-implantation development and that its down-regulation may lead to the low hatching rate of porcine parthenogenetic blastocysts.  相似文献   
994.
Hepatic stellate cell (HSC) activation plays an important role in liver fibrogenesis. Transdifferentiation of quiescent hepatic stellate cells into myofibroblastic-HSCs is a key event in liver fibrosis. The methyl-CpG-binding protein MeCP2 which promotes repressed chromatin structure is selectively detected in myofibroblasts of diseased liver. MeCP2 binds to methylated CpG dinucleotides, which are abundant in the promoters of many genes. Treatment of HSCs with DNA methylation inhibitor 5-aza-2′- deoxycytidine (5-azadC) prevented proliferation and activation. Treatment with 5-azadC prevented loss of Patched (PTCH1) expression that occurred during HSCs activation. In a search for underlying molecular medchanisms, we investigated whether the targeting of epigenetic silencing mechanisms could be useful in the treatment of PTCH1-associated fibrogenesis. It was indicated that hypermethylation of PTCH1 is associated with the perpetuation of fibroblast activation and fibrosis in the liver. siRNA knockdown of MeCP2 increased the expressions of PTCH1 mRNA and protein in hepatic myofibroblasts. These data suggest that DNA methylation and MeCP2 may provide molecular mechanisms for silencing of PTCH1.  相似文献   
995.
996.
997.
The function of a member of the actin-depolymerizing factor family from Gossypium barbadense, GbADF1, was investigated. Tobacco (Nicotiana tabacum) lines expressing GbADF1 were produced by Agrobacterium-mediated transformation. Southern and northern blot analyses showed that GbADF1 was successfully incorporated as a single copy into the tobacco genome and stably expressed in three lines of T1 transgenic tobacco plants. Biological changes were detected in these transgenic lines, wherein GbADF1 transgenic seedlings exhibited shorter hypocotyls along with fewer root hairs than those of control plants. Moreover, guard cells of leaves of the transgenic plants were induced to close stomata, while flowering was delayed 5 days in T1 lines compared to those of empty vector transgenic control plants. Segregation of GbADF1 in the T2 generation fits the expected 3:1 ratio corresponding to a single dominant gene. Subsequently, GbADF1 was fused to the green fluorescent protein gene to generate a fusion expression vector. Transient expression analysis indicated that this fusion protein was localized in the nucleus and cytoskeleton of epidermal cells of onion. These results suggest that actin-depolymerizing factor 1 gene from G. barbadense plays an important role in the process of plant cell morphogenesis.  相似文献   
998.
Meso-tetrakis(N-methyl pyridinium-4-yl)porphyrin (TMPyP) intercalates between the base-pairs of DNA at a low [TMPyP]/[DNA base] ratio in aqueous solutions and molecular crowding conditions, which is induced by the addition of Poly(ethylene glycol) (PEG). Studied DNA-binding drugs, including TMPyP, 9-aminoacridine, ethidium bromide, and DAPI (4′,6-diamidino-2-phenylindole) showed similar binding properties in the presence or absence of PEG molecules which is examined by circular and linear dichroism. According to the LDr (reduced linear dichroism) results of the binding drugs examined in this work, PEG molecules induced no significant change compared to their binding properties in aqueous buffering systems. These results suggest that the transition moments are not expected to be perturbed significantly by PEG molecules. In this study, the experimental conditions of PEG 8000 were maintained at 35% (v/v) of total reaction volume, which is equal to the optimal molar concentration (0.0536 M as final concentration for PEG 8000) to maintain suitable cell-like conditions. Therefore, there was no need to focus on the conformational changes of the DNA helical structure, such as forming irregular aggregate structures, induced by large quantities of molecular crowding media itself at this stage.  相似文献   
999.
Rice LTRPK1, which encodes a member of the casein kinase I family, has been reported to be involved in root development, hormone response, and metabolic processes. Here we further show that LTRPK1 participates in stress resistance by regulating cytoskeleton rearrangement and formation of cold tolerance and adaptation. Semiquantitative RT-PCR analysis revealed enhanced expression of LTRPK1 in plants subject to low-temperature stress at 4 °C, suggesting a role in low-temperature-related cell responses and signal transduction pathways. Further analysis of LTRPK1-deficient transgenic plants showed that under low-temperature treatment, the growth rate of transgenic plant primary roots, which is commonly used as an indicator for cold stress response abilities, was less inhibited than that of control plants. Moreover, damage to the plasma membrane of root cells in LTRPK1-deficient plants was greater than that of controls as measured by relative electrical conductivity (REC). The malondialdehyde (MDA) content of LTRPK1-deficient plants also increased over that of the control, indicating increased plasma membrane permeability. Further immunofluorescence localization observations indicated that microtubules of transgenic plants subject to low temperature disassembled more rapidly, whereas the control plant microtubules in most cells of the root elongation zone kept their normal habitus, which suggested that LTRPK1-deficient plants had reduced capacity to resist low-temperature stress through regulation of microtubule assembly. These results demonstrate involvement of LTRPK1 in low-temperature stress and provide new insight for rice breeding and germplasm innovation to improve crop cold tolerance.  相似文献   
1000.
Progressive pulmonary inflammation and emphysema have been implicated in the progression of chronic obstructive pulmonary disease (COPD), while current pharmacological treatments are not effective. Transplantation of bone marrow mesenchymal stem cells (MSCs) has been identified as one such possible strategy for treatment of lung diseases including acute lung injury (ALI) and pulmonary fibrosis. However, their role in COPD still requires further investigation. The aim of this study is to test the effect of administration of rat MSCs (rMSCs) on emphysema and pulmonary function. To accomplish this study, the rats were exposed to cigarette smoke (CS) for 11 weeks, followed by administration of rMSCs into the lungs. Here we show that rMSCs infusion mediates a down‐regulation of pro‐inflammatory mediators (TNF‐α, IL‐1β, MCP‐1, and IL‐6) and proteases (MMP9 and MMP12) in lung, an up‐regulation of vascular endothelial growth factor (VEGF), VEGF receptor 2, and transforming growth factor (TGFβ‐1), while reducing pulmonary cell apoptosis. More importantly, rMSCs administration improves emphysema and destructive pulmonary function induced by CS exposure. In vitro co‐culture system study of human umbilical endothelial vein cells (EA.hy926) and human MSCs (hMSCs) provides the evidence that hMSCs mediates an anti‐apoptosis effect, which partly depends on an up‐regulation of VEGF. These findings suggest that MSCs have a therapeutic potential in emphysematous rats by suppressing the inflammatory response, excessive protease expression, and cell apoptosis, as well as up‐regulating VEGF, VEGF receptor 2, and TGFβ‐1. J. Cell. Biochem. 114: 323–335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号