首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   16篇
  2024年   2篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   8篇
  2018年   9篇
  2017年   13篇
  2016年   16篇
  2015年   20篇
  2014年   20篇
  2013年   20篇
  2012年   28篇
  2011年   20篇
  2010年   15篇
  2009年   15篇
  2008年   21篇
  2007年   17篇
  2006年   12篇
  2005年   12篇
  2004年   16篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1985年   6篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
  1957年   1篇
排序方式: 共有342条查询结果,搜索用时 428 毫秒
111.
Two-month-old seedlings of Bruguiera parvifora were treated with varying levels of NaCl (100, 200 and 400 mM) under hydroponic culture. Total proteins were extracted from leaves of control and NaCl treated plants after 7, 14, 30 and 45 d of treatment and analysed by SDS-PAGE. As visualized from SDS-PAGE, the intensity of several protein bands of molecular weight 17, 23, 32, 33 and 34 kDa decreased as a result of NaCl treatment. The degree of decrease of these protein bands seemed to be roughly proportional to the external NaCl concentration. The most obvious change concerned a 23 kDa-polypeptide (SSP-23), which disappeared after 45 d treatment in 400 mM NaCl. Moreover, the SSP-23 protein, which disappeared in B. parviflora under salinity stress, reappeared when these salinized seedlings were desalinized. These observations suggest the possible involvement of these polypeptides for osmotic adjustment under salt stress. NaCl stress also caused an increase in the activity of both acid and alkaline protease. The increasing activity of proteases functions as a signal of salt stress in B. parviflora, which induces the reduction of protein level.  相似文献   
112.
113.
114.
Chloroplast DNA (cpDNA) regions, trnS-psbC and rbcL, from 120 individuals of 24 mangrove and mangrove associate species belonging to 11 orders, 13 families and 17 genera of Angiospermae were amplified by the polymerase chain reaction (PCR) and restriction-digested with HaeIII. Analysis of polymorphism in the restriction fragments (PCR-RFLP) revealed 18 classes of restriction banding pattern in trnS-psbC region. This has provided molecular evidence for diversity in the mangrove floral component at the above-species level. Intra-generic variations were observed in three genera, viz. Rhizophora, Avicennia and Suaeda. Species-specific restriction patterns were found in the genera Rhizophora and Suaeda. A natural hybrid belonging to the genus Rhizophora was also analysed, and its restriction pattern was the same as that of a putative parental species.PCR-RFLP analysis of rbcL gene region was less differentiating. However, it showed 13 different classes of restriction patterns and revealed the usefulness of these investigations for genome analysis at a higher taxonomic level. Intra-specific variation was not observed in any of the species in either of the cpDNA regions analysed. This is the first report which describes variations in the chloroplast genome of mangrove species. Received: 20 April 1999 / Accepted: 12 May 1999  相似文献   
115.
Plasma aldosterone concentrations were found to be higher in the newborn, presumably prehypertensive, spontaneously hypertensive rat at 5, 10 and 20 days of age compared to age-matched normotensive Wistar-Kyoto (WKY). In addition, plasma aldosterone concentrations were seen to rise in newborn WKY in contrast to findings in Wistar rats and other mammalian species.  相似文献   
116.
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and –51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change.  相似文献   
117.
Plants, being sessile organisms, are more exposed to the hazards of constantly changing environmental conditions globally. During the lifetime of a plant, the root system encounters various challenges such as obstacles, pathogens, high salinity, water logging, nutrient scarcity etc. The developmental plasticity of the root system provides brilliant adaptability to plants to counter the changes exerted by both external as well as internal cues and achieve an optimized growth status. Phytohormones are one of the major intrinsic factors regulating all aspects of plant growth and development both independently as well as through complex signal integrations at multiple levels. We have previously shown that glucose (Glc) and brassinosteroid (BR) signalings interact extensively to regulate lateral root (LR) development in Arabidopsis.1 Auxin efflux as well as influx and downstream signaling components are also involved in Glc-BR regulation of LR emergence. Here, we provide evidence for involvement of ethylene signaling machinery downstream to Glc and BR in regulation of LR emergence.  相似文献   
118.
Realizing the therapeutic potential of human induced pluripotent stem (iPS) cells will require robust, precise and safe strategies for genetic modification, as cell therapies that rely on randomly integrated transgenes pose oncogenic risks. Here we describe a strategy to genetically modify human iPS cells at 'safe harbor' sites in the genome, which fulfill five criteria based on their position relative to contiguous coding genes, microRNAs and ultraconserved regions. We demonstrate that ~10% of integrations of a lentivirally encoded β-globin transgene in β-thalassemia-patient iPS cell clones meet our safe harbor criteria and permit high-level β-globin expression upon erythroid differentiation without perturbation of neighboring gene expression. This approach, combining bioinformatics and functional analyses, should be broadly applicable to introducing therapeutic or suicide genes into patient-specific iPS cells for use in cell therapy.  相似文献   
119.
Root architecture is developmentally plastic and affected by many intrinsic factors (e.g. plant hormones) and extrinsic factors (e.g. touch, gravity) in order to maximize nutrient and water acquisition. We have recently shown that asymmetrical exposure of cytokinin (CK) at the root tip causes root growth directional changes that is dependent on ethylene signaling and is potentiated by glucose signaling. Auxin homeostasis as maintained by auxin signaling and transport is also involved in CK-induced root cell elongation and differential growth. The signaling pathways eventually converge at actin filament organization since actin filament organization inhibitor latrunculin B (Lat B) can also induce similar growth. We, show that CK can actually alter actin filament organization as seen in actin binding protein 35S::GFP-ABD2-GFP transgenic lines as is also altered by auxin polar transport inhibitor 1-N-naphthylphthalamic acid (NPA) and Lat B in different manners.  相似文献   
120.
The antagonistic potential of salinity tolerant (ST) Trichoderma (Th) isolates against Fusarium oxysporum f.sp. ciceri (foc) was tested, along with their capability to induce relative salt stress tolerance in chickpea with the aim to exploit their use as biological agents in reducing deleterious effects of salinity and controlling Fusarium wilt of chickpea under saline soil conditions. Under laboratory conditions, salt stress was created by supplementing nutrient medium with different concentrations of NaCl viz. 0, 70, 150 and 240?mM NaCl and a pot experiment was conducted using natural saline soil (EC – 6.6 dS?m?1). Out of 45 Th isolates studied, only five isolates viz. Th-13, Th-14, Th-19, Th-33 and Th-50 were selected to be ST as these were able to grow and sporulate in growth medium containing up to 240?mM NaCl. In saline medium, ST isolates greatly surpassed salinity sensitive (SS) isolate with respect to growth rate, mycelial dry weight, sporulation and biological proficiency against foc. Out of five ST isolates that retained their tolerance to different salt stress levels, Th-14 and Th-19 showed maximum antagonism against foc. Under greenhouse conditions, chickpea plants obtained from seeds bioprimed with Th-14 and Th-19 performed well both at germination and seedling stage in comparison to control in saline soil. As compared to untreated plants, characterisation of Th treated plants confirmed that they had reinforced contents of proline along with relatively higher levels of total phenols, membrane stability index and superoxide dismutase activity while lower accumulation of hydrogen peroxide and malondealdehyde contents. ST isolates, Th-14 and Th-19 significantly reduced foc-induced wilt disease incidence in chickpea plants. The population density of both the Th isolates in rhizosphere far exceeded that of foc under both saline and non-saline soils. However, Th-14 was found more efficient in increasing relative salt stress tolerance in chickpea and reducing the foc growth in rhizosphere under present materials and conditions. These findings provide a novel paradigm for developing alternative, environmentally safe strategy to alleviate salt stress and manage fungal diseases such as foc that aggravates under saline soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号