首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214043篇
  免费   19743篇
  国内免费   426篇
  2021年   2253篇
  2020年   1747篇
  2019年   1908篇
  2018年   3872篇
  2017年   3449篇
  2016年   4684篇
  2015年   6115篇
  2014年   6714篇
  2013年   8734篇
  2012年   10324篇
  2011年   9578篇
  2010年   6222篇
  2009年   5084篇
  2008年   7683篇
  2007年   7368篇
  2006年   7218篇
  2005年   6227篇
  2004年   6184篇
  2003年   5735篇
  2002年   5465篇
  2001年   11945篇
  2000年   11801篇
  1999年   8891篇
  1998年   2443篇
  1997年   2394篇
  1996年   2231篇
  1995年   1962篇
  1994年   1842篇
  1993年   1714篇
  1992年   5782篇
  1991年   5429篇
  1990年   4863篇
  1989年   4959篇
  1988年   4391篇
  1987年   3873篇
  1986年   3485篇
  1985年   3476篇
  1984年   2644篇
  1983年   2311篇
  1982年   1724篇
  1981年   1425篇
  1979年   2454篇
  1978年   1879篇
  1977年   1704篇
  1976年   1486篇
  1975年   1745篇
  1974年   1806篇
  1973年   1775篇
  1972年   1592篇
  1971年   1450篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Methionine aminopeptidase (MAP) catalyzes the removal of amino-terminal methionine from proteins. The Escherichia coli map gene encoding this enzyme was cloned; it consists of 264 codons and encodes a monomeric enzyme of 29,333 daltons. In vitro analyses with purified enzyme indicated that MAP is a metallo-oligopeptidase with absolute specificity for the amino-terminal methionine. The methionine residues from the amino-terminal end of the recombinant proteins interleukin-2 (Met-Ala-Pro-IL-2) and ricin A (Met-Ile-Phe-ricin A) could be removed either in vitro with purified MAP enzyme or in vivo in MAP-hyperproducing strains of E. coli. In vitro analyses of the substrate preference of the E. coli MAP indicated that the residues adjacent to the initiation methionine could significantly influence the methionine cleavage process. This conclusion is consistent, in general, with the deduced specificity of the enzyme based on the analysis of known amino-terminal sequences of intracellular proteins (S. Tsunasawa, J. W. Stewart, and F. Sherman, J. Biol. Chem. 260:5382-5391, 1985).  相似文献   
962.
Among components alpha, beta, and gamma of penicillin-binding protein 1b, the alpha and gamma components were confirmed to represent the primary gene products by agreement of their N-terminal amino acid sequences with those predicted from the nucleotide sequence of the ponB (penicillin-binding protein 1b) gene with exclusion of the first methionine in each component. The generation of beta occurred primarily after cell disruption, and the simultaneous loss of alpha suggested the conversion of alpha to beta. The N-terminal amino acid sequence analyzed for beta showed that the conversion was due to the removal of 24 amino acids from the N terminus of alpha.  相似文献   
963.
The enzymatic mechanism of alpha-hydroxylation of lignoceroyl-CoA, an intermediate in the synthesis of hydroxyceramide, was studied. In the presence of NADPH, sphingosine and microsomes from 20-day-old rat brain, 14C from [1-14C]lignoceroyl-CoA was incorporated into hydroxyceramide. Activity was linear with time (up to 40 min) and with protein (up to 0.8 mg). The apparent Km for lignoceroyl-CoA was about 10 microM. NADPH was a more efficient electron donor than NADH. Oxygen was required for activity, which increased linearly up to 20% O2. In 5 and 10% oxygen, the reaction was inhibited by 0.1 mM cyanide and by electron transfer chain inhibitors, cytochrome c, ferricyanide, menadione, and p-chloromercuriphenyl sulphonate; CO and SKF-525A had no effect. Moreover none of the inhibitors affected the formation of hydroxyceramide. Lignoceroyl-CoA alpha-hydroxylase appears to be an oxygenase requiring NADPH and oxygen, which involves cyanide-sensitive enzyme.  相似文献   
964.
The metabolism of sulfide, sulfur, and acetate by Beggiatoa alba was investigated under oxic and anoxic conditions. B. alba oxidized acetate to carbon dioxide with the stoichiometric reduction of oxygen to water. In vivo acetate oxidation was suppressed by sulfide and by several classic respiratory inhibitors, including dibromothymoquinone, an inhibitor specific for ubiquinones. B. alba also carried out an oxygen-dependent conversion of sulfide to sulfur, a reaction that was inhibited by several electron transport inhibitors but not by dibromothymoquinone, indicating that the electrons released from sulfide oxidation were shuttled to oxygen without the involvement of ubiquinones. Intracellular sulfur stored by B. alba was not oxidized to sulfate or converted to an external soluble form under aerobic conditions. On the other hand, sulfur stored by filaments of Thiothrix nivea was oxidized to extracellular soluble oxidation products, including sulfate. Sulfur stored by filaments of B. alba, however, was reduced to sulfide under short-term anoxic conditions. This anaerobic reduction of sulfur was linked to the endogenous oxidation of stored carbon and to hydrogen oxidation.  相似文献   
965.
Among a set of frameshift mutagen (ICR-191; Polysciences, Inc.)-induced mutations that confer inability to grow anaerobically with N2O as the sole electron acceptor, one class was found that produced an inactive N2O reductase which lacked copper. All of these mutant strains failed to produce a 61,000-Mr protein located in the outer membrane. This protein, termed NosA, seems not to be responsible for bringing copper into the cell because the mutant strains and their parent were similarly sensitive to the copper content of the growth medium and no intermediate copper concentration in the medium permitted the mutant strains (nosA) to grow anaerobically with N2O as the sole electron acceptor. We conclude that NosA is necessary to insert copper into N2O reductase or to maintain it there.  相似文献   
966.
The mini-F plasmids pSC138, pKP1013, and pKV513 were unable to transform Escherichia coli cells with a dnaA-defective mutation under nonpermissive conditions. The dnaA defect was suppressed for host chromosome replication either by the simultaneous presence of the rnh-199 (amber) mutation or by prophage P2 sig5 integrated at the attP2II locus on the chromosome, both providing new origins for replication independent of dnaA function. The dnaA mutations tested were dnaA17, dnaA5, and dnaA46. dnaA5 and dnaA46 are missense mutations. dnaA17 is an amber mutation whose activity is controlled by the temperature-sensitive amber suppressor supF6. Under permissive conditions in which active DnaA protein was available, the mini-F plasmids efficiently transformed the cells. However, the transformants lost the plasmid as the cells multiplied under conditions in which DnaA protein was inactivated or its synthesis was arrested. As controls, plasmids pSC101 and pBR322 were examined along with mini-F; pSC101 behaved in the same manner as mini-F, showing complete dependence on dnaA for stable maintenance, whereas pBR322 was indifferent to the dnaA defect. Thus, ori-2-dependent mini-F plasmid replication seems to require active dnaA gene function. This notion was strengthened by the results of deletion analysis which revealed that integrity of at least one of the two DnaA boxes present as a tandem repeat in ori-2 was required for the origin activity of mini-F replication.  相似文献   
967.
We determined the entire nucleotide sequence of the Klebsiella aerogenes W70 pullulanase gene (pulA) contained on a 4.2-kilobase-pair fragment of plasmid pPB174. The amino acid composition deduced from an open reading frame of 3,288 base pairs agreed closely with that determined for the intracellular pullalanase. The precursor enzyme consisted of 1,096 amino acid residues and contained a hydrophobic N-terminal signal peptide and the consensus sequence for the bacterial prelipoprotein signal peptide cleavage site.  相似文献   
968.
A 7.9-kilobase (kb) chromosomal fragment was cloned from a mercury-resistant Bacillus sp. In Escherichia coli, in the presence of a second plasmid carrying functional transport genes, resistance to HgCl2 and to phenylmercury acetate (PMA) was expressed. Shortening the cloned fragment to 3.8 kb abolished resistance to PMA but not to HgCl2. In Bacillus subtilis, the 3.8-kb fragment produced mercuric reductase constitutively but did not produce resistance to HgCl2 or to PMA.  相似文献   
969.
A cosmid bank of Serratia marcescens was established from which DNA fragments were cloned into the plasmid pBR322, which conferred the chromosomally encoded hemolytic activity to Escherichia coli K-12. By transposon mutagenesis with Tn1000 and Tn5 IS50L::phoA (TnphoA), the coding region was assigned to a DNA fragment, designated hly, comprising approximately 7 kilobases. Two proteins with molecular weights of 61,000 (61K protein) and 160,000 (160K protein) were expressed by the pBR322 derivatives and by a plasmid which contained the hly genes under the control of a phage T7 promoter and the T7 RNA polymerase. When strongly overexpressed the 160K protein was released by E. coli cells into the extracellular medium concomitant with hemolytic activity. The genes encoding the 61K and the 160K proteins were transcribed in the same direction. Mutants expressing a 160K protein truncated at the carboxy-terminal end were partially hemolytic. Hemolysis was progressively inhibited by saccharides with increasing molecular weights from maltotriose (Mr 504) to maltoheptaose (Mr 1,152) and was totally abolished by dextran 4 (Mr 4,000). This result and the observed influx of [14C]sucrose into erythrocytes in the presence of hemolytic E. coli transformants under osmotically protective conditions suggest the formation of defined transmembrane channels by the hemolysin.  相似文献   
970.
Synthesis of beta-lactamase, the product of the amp gene on pBR322, in Escherichia coli K-12 was reversibly repressed with a shift-up of the growth temperature from 30 to 42 degrees C. The temperature shift, however, did not affect the level of mRNA encoding beta-lactamase, which suggested the involvement of translational control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号