首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1036篇
  免费   92篇
  2021年   22篇
  2020年   13篇
  2019年   13篇
  2018年   17篇
  2017年   9篇
  2016年   20篇
  2015年   40篇
  2014年   51篇
  2013年   67篇
  2012年   58篇
  2011年   59篇
  2010年   46篇
  2009年   39篇
  2008年   54篇
  2007年   52篇
  2006年   45篇
  2005年   43篇
  2004年   48篇
  2003年   34篇
  2002年   44篇
  2001年   29篇
  2000年   21篇
  1999年   17篇
  1998年   13篇
  1997年   16篇
  1994年   7篇
  1993年   6篇
  1992年   12篇
  1991年   10篇
  1990年   11篇
  1989年   10篇
  1988年   11篇
  1987年   7篇
  1986年   12篇
  1985年   17篇
  1984年   14篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1979年   15篇
  1978年   5篇
  1975年   6篇
  1974年   15篇
  1973年   5篇
  1972年   10篇
  1971年   7篇
  1970年   6篇
  1969年   5篇
  1967年   5篇
  1966年   9篇
排序方式: 共有1128条查询结果,搜索用时 203 毫秒
111.
In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes.In humans, it has long been recognized that the reproductive age of the parents has an influence on the health of their progeny. An older reproductive age of the mother is known to increase the fraction of aneuploid gamete formation (Hurles, 2012). For instance, the risk for a trisomy increases from 2% to 3% for mothers in their 20s to more than 30% for mothers in their 40s (Hassold and Hunt, 2009). The age of the father also has an effect on the frequency of spontaneous congenital disorders and common complex diseases, such as autism and some cancers (Goriely and Wilkie, 2012). Indeed, sperm from 36- to 57-year-old men have more double-strand breaks (DSBs) than those of 20- to 35-year-old individuals (Singh et al., 2003). Similarly, the efficiency of DSB repair was reported to decrease with age in vegetative tissues of the plant model system Arabidopsis (Arabidopsis thaliana; Boyko et al., 2006).Owing to the continuous divisions of spermatogonial stem cells, the male germline of humans is thought to be more mutagenic than the female germline. Indeed, it was shown that the paternal germline is more mutagenic than the maternal one with respect to base substitutions (Kong et al., 2012) and replication slippage errors at microsatellites (Sun et al., 2012). It is also known that carriers of germline mutations in mismatch repair (MMR) genes in humans are prone to get colorectal cancer and that the risk depends on the parent-of-origin of the mutation (van Vliet et al., 2011). The molecular basis of these parental effects is not entirely clear but is likely to involve higher rates of nondisjunction during female meiosis, higher mutation rates during spermatogenesis, and probably additional effects of aging.In contrast to the effect of parental age on germline mutations, not much is known about potential effects of parental reproductive age on somatic mutation rates in the offspring. However, it has been shown in animal studies that radiation of males can lead to somatic mutations in their progeny—and subsequent generations—that cannot be attributed to mutations in the paternal germline (for review, see Little et al., 2013). Moreover, several recent studies have illustrated the existence of complex parental and transgenerational effects in humans, although their molecular basis is not clear (Grossniklaus et al., 2013). These effects can be of either genetic nature (but the effect is seen even in offspring that did not inherit the genetic variant from their parents; for review, see Nadeau, 2009) or epigenetic nature (where environmental influences can possibly exert effects on subsequent generations; for review, see Pembrey et al., 2006; Pembrey, 2010; Curley et al., 2011). It is currently not known whether such parental effects affect the somatic mutation rates in the offspring or whether the effects are modulated by parental age.Taking advantage of the plant model system Arabidopsis, in which various somatic mutation rates can readily be assessed (Bashir et al., 2014), we investigated the effects of parental reproductive age on somatic mutation rates in the progeny. We report that there is a pronounced effect of parental age on somatic mutation rates in their offspring in a parent-of-origin-dependent fashion. Thus, some form of parental information, which is inherited through the gametes to the next generation, seems to alter the somatic mutation rates in the progeny and changes with parental reproductive age.  相似文献   
112.
113.
Human β‐defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N‐terminus of HBD4. Our results show that l ‐arginine to d ‐arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l ‐arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d ‐arginine. Substitution of cysteine with the hydrophobic helix‐promoting amino acid α‐aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d ‐arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d ‐amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
114.
115.
Neuronal calcium sensor-1 (NCS-1) interacts with many membranes and cytosolic proteins, both in a Ca2+-dependent and in a Ca2+-independent manner, and its physiological role is governed by its N-terminal myristoylation. To understand the role of myristoylation in altering Ca2+ response and other basic biophysical properties, we have characterized the Ca2+ filling pathways in both myristoylated (myr) and non-myristoylated (non-myr) forms of NCS-1. We have observed that Ca2+ binds simultaneously to all three active EF-hands in non-myr NCS-1, whereas in the case of myr NCS-1, the process is sequential, where the second EF-hand is filled first, followed by the third and fourth EF-hands. In the case of myr NCS-1, the observed sequential Ca2+ binding process becomes more prominent in the presence of Mg2+. Besides, the analysis of 15N-relaxation data reveals that non-myr NCS-1 is more dynamic than myr NCS-1. The overall molecular tumbling correlation time increases by approximately 20% upon myristoylation. Comparing the apo forms of non-myr NCS-1 and myr NCS-1, we found the possibility of existence of some substates, which are structurally closer to the holo form of the protein. There are more such substates in the case of non-myr NCS-1 than in the case of the myr NCS-1, suggesting that the former accesses larger volumes of conformational substates compared with the latter. Further, the study reveals that the possibility of Ca2+ binding simultaneously to different parts of the protein is more favourable in non-myr NCS-1 than in myr NCS-1.  相似文献   
116.
Identification of hub proteins from sequence is a challenge in molecular biology. Therefore, it is of interest to predict protein hubs in networks. We describe the prediction of protein "hub" using physiochemical, thermodynamic and conformational properties of amino acid residues in sequence. We have used twenty sequence based features to identify hub behaviour. Linear discriminant analysis and normalised Bayesian approach were utilized for identifying hub proteins solely using these sequence features in E. coli/H. sapiens datasets with accuracies of 99.5/98.6, 87.8/89.6 and 90.1/92.6, respectively.  相似文献   
117.
Background In a time of limited resources and the need for cohesive services, understanding levels of need and prevalence is key. Manchester has a diverse range of cultures and socio-economic groups; national data is valuable but not always representative of local need.Aim To assess the prevalence of mental health needs in secondary school pupils in Manchester.Method Parents and teachers in three secondary schools were invited to complete the Strengths and Difficulties Questionnaire (SDQ) and a tool examining unmet needs.Results Initially, 560 pupils were chosen. Having excluded families that opted out, 503 questionnaires were distributed. Teachers returned 200 questionnaires and parents returned 127. Higher than average levels of need were identified with teachers reporting that 18% of pupils scored abnormally on the SDQ. Parent rates were also higher than the national average at 13.4%.Discussion Parents and teachers wanted children to be seen at home and at school, the need for consultation and outreach from mental health into schools is emphasised.  相似文献   
118.
Conformation and activity of delta-lysin and its analogs   总被引:1,自引:0,他引:1  
Dhople VM  Nagaraj R 《Peptides》2005,26(2):217-225
Delta-Lysin is a 26-residue hemolytic peptide secreted by Staphylococcus aureus. Unlike the bee venom peptide melittin, delta-lysin does not exhibit antibacterial activity. We have synthesized delta-lysin and several analogs wherein the N-terminal residues of the toxin were sequentially deleted. The toxin has three aspartic acids, four lysines and no prolines. Analogs were also generated in which all the aspartic acids were replaced with lysines. A proline residue was introduced in the native sequences as well as in the analogs where aspartic acids were replaced with lysines. We observed that 20- and 22-residue peptides corresponding to residues 7-26 and 5-26 of delta-lysin, respectively, had greater hemolytic activity than the parent peptide. These shorter peptides, unlike delta-lysin, did not self-associate to adopt alpha-helical conformation in water, at lytic concentrations. Introduction of proline or substitution of aspartic acids by lysines resulted in loss in propensity to adopt helical conformation in water. When proline was introduced in the peptides corresponding to the native toxin sequence, loss of hemolytic activity was observed. Substitution of all the aspartic acids with lysines resulted in enhanced hemolytic activity in all the analogs. However, when both proline and aspartic acid to lysine changes were made, only antibacterial activity was observed in the shorter peptides. Our investigations on delta-lysin and its analogs provide insights into the positioning of anionic, cationic residues and proline in determining hemolytic and antibacterial activities.  相似文献   
119.
Wild bonnet macaques (Macaca radiata) have been shown to recognize models of leopards (Panthera pardus), based on their configuration and spotted yellow coat. This study examined whether bonnet macaques could recognize the spotted and dark melanic morph when partially concealed by vegetation. Seven troops were studied at two sites in southern India, the Mudumalai Wildlife Sanctuary and the Kalakad-Mundanthurai Tiger Reserve. The forequarters and hindquarters of the two leopard morphs were presented from behind thick vegetation to individuals at feeding stations 25 m away. Flight reaction times and frequency of flight were obtained from video for only those individuals who oriented towards the models prior to hearing alarm calls. Bonnet macaques exhibited faster reaction times and greater frequency of flight after looking at the spotted morph's forequarter than after looking at either its spotted hindquarter or the dark morph's forequarter. The hindquarter of the dark morph was ignored completely. Artificial neural network modeling examined the perceptual aspects of leopard face recognition and the role of spots as camouflage. When spots were integrated into the pattern recognition process via network training, these spots contributed to leopard face recognition. When networks were not trained with spots, spots did not act as camouflage by disrupting facial features.  相似文献   
120.
Current evidence suggests that zinc kills neurons by disrupting energy production, specifically by inhibiting mitochondrial function. However it is unclear if the inhibitory effect requires zinc accumulation, and if so, precisely how zinc enters mitochondria. Here, using fluorescence microscopy to visualize individual rat brain mitochondria, we detected matrix zinc uptake using the fluorophore FluoZin-3. Fluorescence increased rapidly in mitochondria treated with micromolar free zinc, and was quickly returned to baseline by membrane permeant chelation. Zinc uptake occurred through the calcium uniporter, because depolarization or uniporter blockade reduced fluorescence changes. However, increased fluorescence under these conditions suggests that zinc can enter through a uniporter-independent pathway. Fluorescence steadily declined over time and was unaffected by acidification or phosphate depletion, suggesting that zinc precipitation is not a mechanism for reducing matrix zinc. Uniporter blockade with ruthenium red also did not change the rate of zinc loss. Instead, zinc appears to exit the matrix through a novel efflux pathway not yet identified. Interestingly, dye-loaded mitochondria showed no fluorescence increase after treatment with strong oxidants, arguing against oxidant-labile intra-mitochondrial zinc pools. This study is the first to directly demonstrate zinc accumulation in individual mitochondria and provides insight about mechanisms mediating mitochondrial zinc uptake and efflux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号