首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   2篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有106条查询结果,搜索用时 31 毫秒
61.
The structures of the bound 13C/2H double-labelled 2'(R/S), 5'(R/S)-2H2-1',2',3',4',5'-13C5-2'-deoxyadenosine and the corresponding 2'-deoxycytidine moieties in the complexes with human deoxycytidine kinase (dCK) have been characterized for the first time by the solution NMR spectroscopy, using Transferred Dipole-Dipole Cross-correlated Relaxation and Transferred nOe experiments. It has been shown that the ligand adopts a South-type sugar conformation when bound to dCK.  相似文献   
62.
Human deoxycytidine kinase (dCK) is a key enzyme in the 5'-phosphorylation of purine and pyrimidine deoxynucleosides with deoxycytidine as the most efficient substrate. The ability of dCK to degrade 2'-deoxyribonucleosides to free nucleobases and 2-deoxy-alpha-d-ribofuranose-1-phosphate was demonstrated by 1H-31P correlation spectroscopy and by isotope enzyme kinetic methods. The reaction depended on inorganic phosphate, and dCK showed maximum cleavage activity between pH 7 and pH 8. In this pH range, [HPO4(2-)] is the dominant phosphate species, most likely being the phosphate donor. All natural deoxyribonucleosides could be cleaved and the Vmax of the phosphorylytic reaction compared to the kinase reaction was about 2-10%. The formation of free nucleobases occurred only with reduced dCK, because the reaction was highly dependent on the presence of reducing agents such as dithiotreitol. Thus, recombinant dCK can act as a phosphorylase, similar to the nucleoside phosphorylase family of enzymes. This catalytic activity is important for the design of in vitro experiments with dCK, such as crystallization and NMR spectroscopy.  相似文献   
63.
Deoxycytidine kinase (dCK), is responsible for the phosphorylation of deoxynucleosides to the corresponding monophosphates using ATP or UTP as phosphate donors. Steady-state intrinsic fluorescence measurements were used to study interaction of dCK with substrates in the absence and presence of phosphate donors. Enzyme fluorescence quenching by its substrates exhibited unimodal quenching when excited at 295 nm. Binding of substrates induced conformational changes in the protein, suggesting that dCK can assume different conformational states with different substrates and may account for the observed differences in their specificity. dCK bound the substrates more tightly in the presence of phosphate donors and UTP is the preferred phosphate donor. Among the substrates tested, the antitumour drugs gemcitabine and cladribine were bound very tightly by dCK, yielding Kd values of 0.75 and 0.8 microM, respectively, in the presence of UTP.  相似文献   
64.
SOX2 functions to maintain neural progenitor identity   总被引:30,自引:0,他引:30  
Graham V  Khudyakov J  Ellis P  Pevny L 《Neuron》2003,39(5):749-765
  相似文献   
65.
Deoxycytidine kinase (dCK), a cytosolic enzyme with broad substrate specificity, plays a key role in the activation of therapeutic nucleoside analogues by their 5'-phosphorylation. The structure of human dCK is still not known and the current work was undertaken to determine its oligomeric and secondary structure. Biophysical studies were conducted with purified recombinant human dCK. The Mr determined by low-speed sedimentation equilibrium under nondenaturing conditions was 60,250 +/- 1,000, indicating that dCK, which has a predicted Mr of 30,500, exists in solution as a dimer. Analysis of circular dichroism spectra revealed the presence of two negative dichroic bands located at 222 and 209 nm with ellipticity values of -11,900 +/- 300 and -12,500 +/- 300 deg x cm2 x dmol(-1), respectively, indicating the presence of approximately 40% alpha-helix and 50% beta-structure. Circular Dichroism studies in the aromatic and far-ultraviolet range and UV difference spectroscopy indicated that binding of substrates to dCK reduced its alpha-helical content and perturbed tryptophan and tyrosine. Steady-state fluorescence demonstrated that deoxycytidine (the phosphate acceptor) and ATP (the phosphate donor) bound to different sites on dCK and fluorescence quenching revealed bimodal binding of deoxycytidine and unimodal binding of ATP. Spectroscopic studies indicated that substrate binding induced conformational changes, with the result that dCK exhibited different affinities for various substrates. These results are consistent with a random bi-bi kinetic mechanism of phosphorylation of dCyd with either ATP or UTP.  相似文献   
66.
SOX genes and neural progenitor identity   总被引:9,自引:0,他引:9  
  相似文献   
67.
68.
Yokota Y  Ring C  Cheung R  Pevny L  Anton ES 《Neuron》2007,54(3):429-445
The cytoskeletal regulators that mediate the change in the neuronal cytoskeletal machinery from one that promotes oriented motility to one that facilitates differentiation at the appropriate locations in the developing neocortex remain unknown. We found that Nck-associated protein 1 (Nap1), an adaptor protein thought to modulate actin nucleation, is selectively expressed in the developing cortical plate, where neurons terminate their migration and initiate laminar-specific differentiation. Loss of Nap1 function disrupts neuronal differentiation. Premature expression of Nap1 in migrating neurons retards migration and promotes postmigratory differentiation. Nap1 gene mutation in mice leads to neural tube and neuronal differentiation defects. Disruption of Nap1 retards the ability to localize key actin cytoskeletal regulators such as WAVE1 to the protrusive edges where they are needed to elaborate process outgrowth. Thus, Nap1 plays an essential role in facilitating neuronal cytoskeletal changes underlying the postmigratory differentiation of cortical neurons, a critical step in functional wiring of the cortex.  相似文献   
69.
B Turk  R Awad  E V Usova  I Bj?rk  S Eriksson 《Biochemistry》1999,38(26):8555-8561
Deoxycytidine kinase (dCK) is an enzyme with broad substrate specificity which can phosphorylate pyrimidine and purine deoxynucleosides, including important antiviral and cytostatic agents. In this study, stopped-flow experiments were used to monitor intrinsic fluorescence changes induced upon binding of various phosphate donors (ATP, UTP, and the nonhydrolyzable analogue AMP-PNP) and the acceptor dCyd to recombinant dCK. Monophasic kinetics were observed throughout. The nucleotides as well as dCyd bound to the enzyme by a two-step mechanism, involving a rapid initial equilibrium step, followed by a protein conformational change that is responsible for the fluorescence change. The bimolecular association rate constants for nucleotide binding [(4-10) x 10(3) M-1 s-1] were 2-3 orders of magnitude lower than those for dCyd binding [(1.3-1.5 x 10(6) M-1 s-1]. This difference most likely is due predominantly to the large difference in the forward rate constants of the conformational changes (0.04-0.26 s-1 vs 560-710 s-1). Whereas the kinetics of the binding of ATP, UTP, and AMP-PNP to dCK showed some differences, UTP exhibiting the tightest binding, no significant differences were observed for the binding of dCyd to dCK in the presence or absence of phosphate donors. However, the binding of dCyd to dCK in the presence of ATP or UTP was accompanied by a 1.5- or 3-fold higher quenching amplitude as compared with dCyd alone or in the presence of AMP-PNP. We conclude that ATP and UTP induce a conformational change in the enzyme, thereby enabling efficient phosphoryl transfer.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号