首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  2024年   1篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有107条查询结果,搜索用时 327 毫秒
41.
Mani RS  Usova EV  Cass CE  Eriksson S 《Biochemistry》2006,45(11):3534-3541
Human deoxycytidine kinase (dCK) phosphorylates both pyrimidine and purine deoxynucleosides, including numerous nucleoside analogue prodrugs. Energy transfer studies of transfer between Trp residues of dCK and the fluorescent probe N-(1-pyrene)maleimide (PM), which specifically labels Cys residues in proteins, were performed. Two of the six Cys residues in dCK were labeled, yielding a protein that was functionally active. We determined the average distances between PM-labeled Cys residues and Trp residues in dCK in the absence and presence of various pyrimidine and purine nucleoside analogues with the Trp residues as energy donors and PM-labeled Cys residues as acceptors. The transfer efficiency was determined from donor intensity quenching and the F?rster distance R(0) at which the efficiency of energy transfer is 50%, which was 19.90 A for dCK-PM. The average distance R between the Trp residues and the labeled Cys residues in dCK-PM was 18.50 A, and once substrates bound, this distance was reduced, demonstrating conformational changes. Several of the Cys residues of dCK were mutated to Ala, and the properties of the purified mutant proteins were studied. PM labeled a single Cys residue in Cys-185-Ala dCK, suggesting that one of the two Cys residues labeled in wild-type dCK was Cys 185. The distance between the single PM-labeled Cys residue and the Trp residues in Cys-185-Ala dCK was 20.75 A. Binding of nucleosides had no effect on the pyrene fluorescence of Cys-185-Ala dCK, indicating that the conformational changes observed upon substrate binding to wild-type dCK-PM involved the "lid region" of which Cys 185 is a part. The substrate specificity of Cys-185-Ala dCK was altered in that dAdo and UTP were better substrates for the mutant than for the wild-type enzyme.  相似文献   
42.
Russian Journal of Bioorganic Chemistry - In the end of the twentieth century, the world entered the era of high-tech and personalized medicine, characterized by the introduction of targeted drugs...  相似文献   
43.
Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES) cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM) in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we investigated the effect of depleting Oct4 in mouse embryos between the pre-streak and headfold stages, ∼E6.0–E8.0, when Oct4 is found in dynamic patterns throughout the embryonic compartment of the mouse egg cylinder. We found that depletion of Oct4 ∼E7.5 resulted in a severe phenotype, comprised of craniorachischisis, random heart tube orientation, failed turning, defective somitogenesis and posterior truncation. Unlike in ES cells, depletion of the pluripotency factors Sox2 and Oct4 after E7.0 does not phenocopy, suggesting that ∼E7.5 Oct4 is required within a network that is altered relative to the pluripotency network. Oct4 is not required in extraembryonic tissue for these processes, but is required to maintain cell viability in the embryo and normal proliferation within the primitive streak. Impaired expansion of the primitive streak occurs coincident with Oct4 depletion ∼E7.5 and precedes deficient convergent extension which contributes to several aspects of the phenotype.  相似文献   
44.
45.
46.
47.
Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax, which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly, active Bax was maintained at the Golgi rather than at the mitochondria, thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage, active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly, upon differentiation, Bax was no longer active, and cells were not acutely sensitive to DNA damage. Thus, maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death, likely to prevent the propagation of mutations during the early critical stages of embryonic development.  相似文献   
48.
RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2'-alpha-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of alpha-hydroxy moieties. 2'-deoxy-2'-beta-fluoro-4'-azidocytidine (RO-0622) and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC(50) = 171 +/- 12 nM and 24 +/- 3 nM for RO-9187 and RO-0622, respectively; CC(50) >1 mM for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4'-azidocytidine) or 2'-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC(50) values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2'-alpha-deoxy-4'-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.  相似文献   
49.
Progesterone biotransformation with recombinant yeasts Yarrowia lipolytica E129A15 and Saccharomyces cerevisiae GRF18/YEp5117 expressing bovine adrenocortical cytochrome P-45017 yielded 17-hydroxyprogesterone and two diols, 17,20- and 17,20-dihydroxypregn-4-en-3-ones. The oxidation of mixtures of the three steroids with chromic acid resulted in the cleavage of 17–20 bonds in the diols with the formation of androst-4-ene-3,17-dione. The biotransformation of pregn-4-ene-20-ol-3-one by means of Y. lipolytica E129A15 was accompanied by the following reactions: the primary oxidation of these compounds to progesterone and the subsequent successive reactions of 17-hydroxylation and 20- and 20-reduction. The results widen the possibilities of enzymatic and chemical modifications of steroids.  相似文献   
50.
In myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2. These results demonstrate that Caspr2 and TAG-1 form a scaffold that is necessary to maintain K+ channels at the juxtaparanodal region, suggesting that axon-glia interactions mediated by these proteins allow myelinating glial cells to organize ion channels in the underlying axonal membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号