首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1134篇
  免费   64篇
  国内免费   1篇
  2023年   6篇
  2022年   5篇
  2021年   28篇
  2020年   18篇
  2019年   18篇
  2018年   25篇
  2017年   17篇
  2016年   24篇
  2015年   52篇
  2014年   70篇
  2013年   93篇
  2012年   96篇
  2011年   89篇
  2010年   59篇
  2009年   57篇
  2008年   68篇
  2007年   65篇
  2006年   53篇
  2005年   50篇
  2004年   23篇
  2003年   35篇
  2002年   40篇
  2001年   13篇
  2000年   13篇
  1999年   23篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1991年   9篇
  1990年   5篇
  1989年   17篇
  1988年   5篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   8篇
  1978年   3篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1967年   2篇
  1964年   3篇
排序方式: 共有1199条查询结果,搜索用时 92 毫秒
51.
Studies in children and mice have shown that respiratory infection alters riboflavin metabolism, resulting in increased urinary loss of this vitamin. This could be due to mobilization of riboflavin from the liver to blood because liver Flavin adenine dinucleotide (FAD) levels were lowered in the mice during infection. To understand the functional implications of lowered hepatic FAD levels during respiratory infection, flavoprotein functions such as oxidative phosphorylation and β-oxidation of the liver mitochondria were examined during infection in mice. Weanling mice were fed either riboflavin-restricted or control diet for 18 days and then injected with a sublethal dose of Klebsiella pneumoniae. During infection, the state 3 respiratory rate with palmitoyl-L-carnitine and glutamate were significantly lowered (27–29%) in the riboflavin-restricted group, whereas in the control group 10% reduction was observed with palmitoyl-L-carnitine as substrate. A 22% reduction in the respiratory control ratio with palmitoyl-L-carnitine as substrate was observed during infection in the riboflavin-restricted group. The β-oxidation of palmitoyl-L-carnitine was significantly lowered (29%) in the riboflavin-restricted infected group. The results of the study suggest that the effects of infection on vital physiologic functions were more pronounced in the riboflavin-restricted mice than in the control mice. © Elsevier Science Inc. 1999  相似文献   
52.
Effect of cigarette smoke on lipid peroxidation (LPX) and antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) in various organs like brain, heart, lung, liver and kidney of the albino rats exposed to cigarette smoke for 30 min/day for a period of 30 days were assayed. It was observed that the lipid peroxide levels in liver, lung and kidney were enhanced in case of animals exposed to cigarette smoke, whereas brain and heart did not show any change as compared to control animals. The activity of the antioxidant enzymes was also elevated in liver, lung and kidney of the test animals whereas, brain and heart did not show any change in the activities of all of these antioxidant enzymes except glutathione-s-transferase which was increased in brain also. The level of reduced glutathione (GSH) was lowered in liver, lung and kidney of the tested animals when compared with the control animals but there was no significant change in brain and heart. The results of our study suggest that cigarette smoke induces lipid peroxidation in liver, lung and kidney, and the antioxidant enzymes levels were enhanced in order to protect these tissues against the deleterious effect of the oxygen derived free radicals. The depletion of reduced glutathione in these organs could be due to it's utilization by the tissues to mop off the free radicals.  相似文献   
53.
The effect(s) of TFE (2,2,2-trifluoroethanol) on three different conformational states (native, denatured, and carboxymethylated) of CTX III and RNase A has been examined. Contrary to the general belief, the results of the present study reveal that TFE can induce helical conformation in a protein which has no sequence propensity to form a helix. It is found that the helix induction in TFE is intricately related to the destabilization of the tertiary structural conformation in proteins. More importantly, the disulfide bonds in proteins are found to have significant influence on the TFE-mediated helix induction. The results obtained in this study strongly suggest that information pertaining to the influence of disulfide bonds on helix induction need to be considered to improve the accuracy of secondary structure prediction algorithms.  相似文献   
54.
A zero erucic acid (C22:1) line of Brassica juncea (VH486), adapted to the agronomic conditions of Northern India, has been modified for its fatty acid composition in the seed oil with antisense constructs using the sequence of fad2 gene of B. rapa. The full-length B. rapa fad2 cDNA sequence was determined by 5 and 3 RACE of a partial sequence available in the EST database. Construct pASfad2.1 contained 315 to 1251 bp and construct pASfad2.2 contained 1 to 1251 bp fragment of the fad2 gene, both in antisense orientation, driven by a truncated napin promoter. Analysis of the levels of linoleic acid (C18:2) in the BC1 seeds of single-copy transgenics showed that the construct pASfad2.2 gave better suppression of the fad2 gene as compared to the construct pASfad2.1. The BC1 transgenic seeds containing the pASfad2.2 construct segregated into two distinct classes of C18:2>20% (putative null homozygotes) and C18:2<20% (putative heterozygotes) in a 1:1 ratio, while the T1 seeds segregated into three classes, C18:2>20%, C18:2 between 12% and 20%) and C18:2<12% (putative homozygotes) in a 1:2:1 ratio. Putative homozygous T1 seeds (C18:2<12% analyzed by the half-seed method) of four of the transgenic lines were grown to establish T2 homozygous lines. These had ca. 73% C18:1 and 8 to 9% each of C18:2 and C18:3 (-linolenic acid) fractions in comparison to ca. 53% C18:1, 24% C18:2 and 16% C18:3 in the parental line VH486.  相似文献   
55.
56.
Previously we found elevated beacon gene expression in the hypothalamus of obese Psammomys obesus. Beacon administration into the lateral ventricle of P. obesus stimulated food intake and body weight gain. In the current study we used yeast two-hybrid technology to screen for proteins in the human brain that interact with beacon. CLK4, an isoform of cdc2/cdc28-like kinase family of proteins, was identified as a strong interacting partner for beacon. Using active recombinant proteins and a surface plasmon resonance based detection technique, we demonstrated that the three members of this subfamily of kinases (CLK1, 2, and 4) all interact with beacon. Based on the known sequence and functional properties of beacon and CLKs, we speculate that beacon could either modulate the function of key regulatory molecules such as PTP1B or control the expression patterns of specific genes involved in the central regulation of energy metabolism.  相似文献   
57.
We recently showed that 5'-terminal secondary structures in CpG DNA affect activity significantly more than those at the 3'-end [Biochem. Biophys. Res. Commun. 306 (2003) 948]. The need for an accessible 5'-end of CpG DNA for activity suggested that the receptor reads the DNA sequence from this end. In continuation of these studies, we have designed immunomodulatory oligonucleotides (IMOs), consisting of a nine-mer stimulatory domain, containing a CpG motif and a hairpin-loop structure at the 3'-end, referred to as self-stabilized CpG DNAs. We studied the ability of self-stabilized CpG DNAs to stimulate human B-cell proliferation and interferon-alpha (IFN-alpha) secretion in plasmacytoid dendritic cell (pDC) culture assays. Self-stabilized CpG DNAs activated human B cells and induced plasmacytoid dendritic cells to secrete high levels of IFN-alpha. While both stimulatory and secondary structures in CpG DNAs were required for pDC activation, CpG motifs were sufficient to activate B cells. Interestingly, CpG motifs were not required for activity in the hairpin duplex region. Further modifications of the hairpin duplex region with a mixture of oligodeoxynucleotides and oligo-2'-O-methylribonucleotides in a heteroduplex formation permitted activation of both human B cells and pDCs.  相似文献   
58.
Cathepsin S, a lysosomal cysteine protease of the papain superfamily, has been implicated in the preparation of MHC class II alphabeta-heterodimers for antigen presentation to CD4+ T lymphocytes and is considered a potential target for autoimmune-disease therapy. Selective inhibition of this enzyme may be therapeutically useful for attenuating the hyperimmune responses in a number of disorders. We determined the three-dimensional crystal structures of human cathepsin S in complex with potent covalent inhibitors, the aldehyde inhibitor 4-morpholinecarbonyl-Phe-(S-benzyl)Cys-Psi(CH=O), and the vinyl sulfone irreversible inhibitor 4-morpholinecarbonyl-Leu-Hph-Psi(CH=CH-SO(2)-phenyl) at resolutions of 1.8 and 2.0 A, respectively. In the structure of the cathepsin S-aldehyde complex, the tetrahedral thiohemiacetal adduct favors the S-configuration, in which the oxygen atom interacts with the imidazole group of the active site His164 rather than with the oxyanion hole. The present structures provide a detailed map of noncovalent intermolecular interactions established in the substrate-binding subsites S3 to S1' of cathepsin S. In the S2 pocket, which is the binding affinity hot spot of cathepsin S, the Phe211 side chain can assume two stable conformations that accommodate either the P2-Leu or a bulkier P2-Phe side chain. This structural plasticity of the S2 pocket in cathepsin S explains the selective inhibition of cathepsin S over cathepsin K afforded by inhibitors with the P2-Phe side chain. Comparison with the structures of cathepsins K, V, and L allows delineation of local intermolecular contacts that are unique to cathepsin S.  相似文献   
59.
Feschotte C  Swamy L  Wessler SR 《Genetics》2003,163(2):747-758
Stowaway is a superfamily of miniature inverted repeat transposable elements (MITEs) that is widespread and abundant in plant genomes. Like other MITEs, however, its origin and mode of amplification are poorly understood. Several lines of evidence point to plant mariner-like elements (MLEs) as the autonomous partners of the nonautonomous Stowaway MITEs. To better understand this relationship, we have taken advantage of the nearly complete genome sequences of two rice subspecies to generate the first inventory of virtually all MLEs and Stowaway families coexisting in a single plant species. Thirty-four different MLEs were found to group into three major clades and 25 families. More than 22,000 Stowaway MITEs were identified and classified into 36 families. On the basis of detailed sequence comparisons, MLEs were confirmed to be the best candidate autonomous elements for Stowaway MITEs. Surprisingly, however, sequence similarity between MLE and Stowaway families was restricted to the terminal inverted repeats (TIRs) and, in a few cases, to adjacent subterminal sequences. These data suggest a model whereby most of the Stowaway MITEs in rice were cross-mobilized by MLE transposases encoded by distantly related elements.  相似文献   
60.
The enzyme glucose-1-phosphate thymidylyltransferase (RffH), the product of the rffh gene, catalyzes one of the steps in the synthesis of enterobacterial common antigen (ECA), a cell surface glycolipid found in Gram-negative enteric bacteria. In Escherichia coli two gene products, RffH and RmlA, catalyze the same enzymatic reaction and are homologous in sequence; however, they are part of different operons and function in different pathways. We report the crystal structure of RffH bound to deoxythymidine triphosphate (dTTP), the phosphate donor, and Mg(2+), refined at 2.6 A to an R-factor of 22.3% (R(free) = 28.4%). The crystal structure of RffH shows a tetrameric enzyme best described as a dimer of dimers. Each monomer has an overall alpha/beta fold and consists of two domains, a larger nucleotide binding domain (residues 1-115, 222-291) and a smaller sugar-binding domain (116-221), with the active site located at the domain interface. The Mg(2+) ion is coordinated by two conserved aspartates and the alpha-phosphate of deoxythymidine triphosphate. Its location corresponds well to that in a structurally similar domain of N-acetylglucosamine-1-phosphate uridylyltransferase (GlmU). Analysis of the RffH, RmlA, and GlmU complexes with substrates and products provides an explanation for their different affinities for Mg(2+) and leads to a proposal for the dynamics along the reaction pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号