首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2874篇
  免费   323篇
  国内免费   21篇
  2023年   13篇
  2021年   37篇
  2020年   32篇
  2019年   52篇
  2018年   68篇
  2017年   46篇
  2016年   70篇
  2015年   151篇
  2014年   144篇
  2013年   179篇
  2012年   220篇
  2011年   202篇
  2010年   120篇
  2009年   111篇
  2008年   122篇
  2007年   115篇
  2006年   134篇
  2005年   133篇
  2004年   123篇
  2003年   111篇
  2002年   87篇
  2001年   91篇
  2000年   93篇
  1999年   61篇
  1998年   31篇
  1997年   29篇
  1996年   31篇
  1994年   22篇
  1993年   11篇
  1992年   43篇
  1991年   46篇
  1990年   36篇
  1989年   36篇
  1988年   31篇
  1987年   36篇
  1986年   28篇
  1985年   18篇
  1984年   30篇
  1983年   31篇
  1982年   25篇
  1981年   17篇
  1980年   14篇
  1979年   18篇
  1978年   23篇
  1977年   16篇
  1976年   19篇
  1975年   13篇
  1974年   12篇
  1973年   15篇
  1972年   11篇
排序方式: 共有3218条查询结果,搜索用时 15 毫秒
61.
Testes control the development of male reproductive system. The testicular interstitial Leydig cells (Leydig cells) synthesize testosterone for promoting spermatogenesis and secondary sexual characteristics. Type A platelet-derived growth factor (PDGF-AA) is one of the most important growth factors in regulating Leydig cell growth and function. Knockout of PDGF-AA or its congenital receptor PDGFR-α leads to poor testicular development caused by reducing Leydig cell numbers, supporting PDGF-AA/PDGFR-α signaling regulates Leydig cell development. Primary cilium is a cellular antenna that functions as an integrative platform to transduce extracellular signaling for proper development and differentiation. Several receptors including PDGFR-α are observed on primary cilia for initiating signaling cascades in distinct cell types. Here we showed that PDGF-AA/PDGFR-α signaling promoted Leydig cells growth, migration, and invasion via primary cilia. Upon PDGF-AA treatment, AKT and ERK signaling were activated to regulate these cellular events. Interestingly, active AKT and ERK were detected around the base of primary cilia. Depletion of ciliary genes (IFT88 and CEP164) alleviated PDGF-AA-activated AKT and ERK, thus reducing Leydig cell growth, migration, and invasion. Thus, our study not only reveals the function of PDGF-AA/PDGFR-α signaling in maintaining testicular physiology but also uncovers the role of primary cilium and downstream signaling in regulating Leydig cell development.  相似文献   
62.
Several research reports delineated the significant role of miRNAs in cancer proliferation, and their modulatory role in cancer mitigation, and drug resistance. Melanoma cells have been acquiring stemness to several chemotherapeutic agents through drug efflux proteins, epigenetic modulation, and DNA repair. miRNAs could be applied as novel therapeutic modalities for treating several kinds of cancers to modulate these mechanisms involved in stemness. Nanocarriers to carry these tumor-targeting miRNAs to modulate stemness are a prominent strategy to overcome their low penetrability, minimal stability, and nonspecificity. We have searched several public databases such as PubMed, Medline, Google scholar, and NLM and obtained the information pertinent to the miRNA-based nanocarrier systems to target stemness through epigenetic modulation in melanomas. This review delineates that various miRNAs can modulate the stemness in melanomas by specific intricate epigenetic signaling, and other cell-based signaling mechanisms. Specific nanocarrier formulations with specific miRNAs are optimal methods to deliver these miRNAs in order to achieve significant entrapment efficiency, loading efficiency, and stability. Furthermore, the combinatorial regimen of FDA-approved chemotherapeutic molecules with tumor-targeting miRNAs and chemotherapy combined with nanocarriers can efficiently deliver the utmost therapeutic window by targeting tumor matrix, invasion, metastasis, and angiogenesis in melanomas. Substantial research should focus on the clinical application of this gene therapy in melanomas using these low immunogenic, highly degradable, and biocompatible combinatorial nanotherapeutic regimens.  相似文献   
63.
The present study was undertaken to further characterize the nucleus reticularis gigantocellularis (NRGC) of the medulla oblongata in the central processing of nociceptive and cardiovascular signals, and its modulation by metenkephalin. In Sprague-Dawley rats anesthetized with pentobarbital sodium, we found that all 125 spontaneously active NRGC neurons that responded to noxious stimuli (tail clamp) also exhibited arterial pressure-relatedness. Forty neurons additionally manifested cardiac periodicity that persisted even during nociceptive responses. While maintaining their cardiovascular responsive characteristics, the nociception-related NRGC neuronal activity was blocked, naloxone-reversibly (0.5 mg/kg, i.v.), by morphine (5 mg/kg, i.v.). Microiontophoretically applied met-enkephalin suppressed the responsiveness of NRGC neurons to individually delivered tail clamp or transient hypertension induced by phenylephrine (5 µg/kg, i.v.). Interestingly, in NRGC neurons that manifested both nociception and arterial pressure relatedness, the preferential reduction in the response to noxious stimuli upon simultaneous elevation in systemic arterial pressure was reversed to one that favored nociception in the presence of met-enkephalin. All actions of met-enkephalin were discernibly blocked by the opioid receptor antagonist, naloxone. Our results suggest that individual NRGC neurons may participate in the processing of both nociceptive and cardiovascular information, or in the coordination of the necessary circulatory supports during nociception. In addition, neuropeptides such as met-enkephalin may exert differential modulation on neuronal responsiveness according to the prevailing physiologic status of the animal. They also showed that NRGC may be a central integrator for pain and cardiovascular-related functions.  相似文献   
64.
A series of 2-substituted 3-chloro-1,4-naphthoquinones was synthesized, and the antiplatelet, antiinflammatory, and antiallergic activities of these compounds were evaluated. The structure-activity relationships in this series were also examined. Most of the 2-alkyl/arylcarboxamido derivatives of 3-chloro-1,4-naphthoquinone showed potent activities with similar trends in each of the activities evaluated.  相似文献   
65.
66.
Modifications in the cyclic nucleotide systems favoring the expression of cyclic GMP effects were found to occur in the transplanted fast-growing Morris hepatoma 3924A. These included: (a) a decreased level of cyclic GMP phosphodiesterase and an increased level of cyclic AMP phosphodiesterase; (b) a disproportionately increased level of cylic GMP-dependent protein kinase relative to that of cyclic AMP-dependent protein kinase; (c) a disproportionately increased level of stimulatory modulator of cyclic AMP-dependent protein kinase relative to that of inhibitory modulator of cyclic AMP-dependent protein kinase; and (d) an increased level of phosphoprotein phosphatase.  相似文献   
67.
68.
69.
70.
Summary Biochemical and ultrastructural studies indicate that the atrophy of adrenal cortex in hypoyhysectomized rats involves the following changes: (1) One to two days after hypophysectomy, there is loss of template activity resulting from cumulative DNA-damage and heterochromatinization.In vivo ACTH-administration led to recuperation of these cells, indicating damage during hypophysectomized state to be reversible. (2) If the duration of hypophysectomy is prolonged, some of the cells become irreversibly damaged and can no longer recuperate afterin vivo ACTH administration. (3) The period of most rapid cell death is from the third to seventh day after hypophysectomy. The cause of cell death is probably due to membrane damage in the absence of protein synthesis, leading to lysis of the cells. Lysozomes and macrophages are apparently not involved.Supported by U.S.P.H.S. grants AM-5384 and AM-13724 and taken in part from dissertations submitted by Chan and by Mostafapour to Wayne State University in partial fulfillment towards the Ph.D. degree.An invited article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号