首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   18篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   5篇
  2017年   4篇
  2016年   10篇
  2015年   10篇
  2014年   12篇
  2013年   13篇
  2012年   16篇
  2011年   16篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1995年   4篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1971年   1篇
  1970年   5篇
  1969年   4篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1965年   4篇
排序方式: 共有261条查询结果,搜索用时 937 毫秒
31.

Background

Saphenous vein graft disease remains a major limitation of coronary artery bypass graft surgery. The process of saphenous vein intimal hyperplasia begins just days after surgical revascularization, setting the stage for graft atherosclerotic disease and its sequalae. Clopidogrel improves outcomes in patients with atherosclerotic disease, and is effective at reducing intimal hyperplasia in animal models of thrombosis. Therefore, the goal of this study will be to evaluate the efficacy of clopidogrel and aspirin therapy versus aspirin alone in the prevention of saphenous vein graft intimal hyperplasia following coronary artery bypass surgery.

Methods

Patients undergoing multi-vessel coronary artery bypass grafting and in whom at least two saphenous vein grafts will be used are eligible for the study. Patients will be randomized to receive daily clopidogrel 75 mg or placebo, in addition to daily aspirin 162 mg, for a one year duration starting on the day of surgery (as soon as postoperative bleeding has been excluded). At the end of one year, all patients will undergo coronary angiography and intravascular ultrasound assessment of one saphenous vein graft as selected by randomization. The trial will be powered to test the hypothesis that clopidogrel and aspirin will reduce vein graft intimal hyperplasia by 20% compared to aspirin alone at one year following bypass surgery.

Discussion

This trial is the first prospective human study that will address the question of whether clopidogrel therapy improves outcomes and reduces saphenous vein graft intimal hyperplasia following cardiac surgery. Should the combination of clopidogrel and aspirin reduce the process of vein graft intimal hyperplasia, the results of this study will help redefine modern antiplatelet management of coronary artery bypass patients.  相似文献   
32.
It has been demonstrated that vasoactive intestinal polypeptide, epidermal growth factor, and chronic activation of phosphatidylinositol 3-kinase can protect prostate cancer cells from apoptosis; however, the signaling pathways that they use and molecules that they target are unknown. We report that vasoactive intestinal polypeptide, epidermal growth factor, and phosphatidylinositol 3-kinase activate independent signaling pathways that phosphorylate the proapoptotic protein BAD. Vasoactive intestinal polypeptide operated via protein kinase A, epidermal growth factor required Ras activity, and effects of phosphatidylinositol 3-kinase were predominantly mediated by Akt. BAD phosphorylation was critical for the antiapoptotic effects of each signaling pathway. None of these survival signals was able to rescue cells that express BAD with mutations in phosphorylation sites, whereas knockdown of BAD expression with small hairpin RNA rendered cells insensitive to apoptosis. Taken together, these results identify BAD as a convergence point of several antiapoptotic signaling pathways in prostate cells.  相似文献   
33.
Stem cell factor (SCF) is a multifunctional cytokine involved in hematopoiesis, melanogenesis and gametogenesis. Previous studies have demonstrated that avian SCF is a requirement for the proliferation and survival of various cell types in vivo and in vitro. In the current study, recombinant quail stem cell factor was produced in Escherichia coli using a prokaryotic expression system. SCF was expressed as a fusion protein with a histidine hexamer tag at the N-terminal end of the protein. Following expression, the protein was purified by affinity chromatography on the Ni-NTA column. The uninduced and induced protein lysates and the purified protein were separated by SDS-PAGE and transferred onto nitrocellulose membrane. Western blot analysis with the monoclonal antibody to the histidine tag identified SCF in the induced cell lysates and the purified sample. The recombinant SCF was approximately 22-23 kD in size. This protein was generated devoid of the signal peptide, the transmembrane domain, and the intracellular domain and, hence, resembles the soluble form of SCF. Biological activity was assayed using the in vitro survival of E12 chicken dorsal root ganglion-derived sensory neurons. The addition of recombinant quail SCF improved neuronal survival. Survival (20.6%) was the highest at the 50 ng/ml concentration of SCF. The availability of quail SCF will be a valuable tool to further resolve the function of stem cell factor in birds.  相似文献   
34.
35.
AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity. This diversity results from coassembly of the known AMPAR subunits, pore-forming GluA and three types of auxiliary proteins, with 21 additional constituents, mostly secreted proteins or transmembrane proteins of different classes. Their integration at distinct abundance and stability establishes the heteromultimeric architecture of native AMPAR complexes: a defined core with a variable periphery resulting in an apparent molecular mass between 0.6 and 1 MDa. The additional constituents change the gating properties of AMPARs and provide links to the protein dynamics fundamental for the complex role of AMPARs in formation and operation of glutamatergic synapses.  相似文献   
36.
The present study article examines the shapes of centipede species–area relationships (SARs) in the Mediterranean islands, compares the results of the linear form of the power model between archipelagos, discusses biological significance of the power model parameters with other taxa on the Aegean archipelago, and tests for a significant small‐island effect (SIE). We used 11 models to test the SARs and we compared the quality‐of‐fit of all candidate models. The power function ranked first and Z‐values was in the range 0.106–0.334. We assessed the presence of SIEs by fitting both a continuous and discontinuous breakpoint regression model. The continuous breakpoint regression functions never performed much better than the closest discontinuous model as a predictor of centipede species richness. We suggest that the relatively low Z‐values in our data partly reflect better dispersal abilities in centipedes than in other soil invertebrate taxa. Longer periods of isolation and more recent island formation may explain the somewhat lower constant c in the western Mediterranean islands compared to the Aegean islands. Higher breakpoint values in the western Mediterranean may also be a result of larger distance to the mainland and longer separation times. Despite the differences in the geological history and the idiosyncratic features of the main island groups considered, the overall results are quite similar and this could be assigned to the ability of centipedes to disperse across isolation barriers. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 146–159.  相似文献   
37.
Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd2+ showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd2+ treatment. Our data show significantly lower Cd2+-induced ROS accumulation in the mutants’ roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions.Cadmium is one of the most toxic soil pollutants. Cadmium ions accumulate in plants and affect, via the food chain, animal and human health. In plants, cadmium is taken up by roots and is transported to aerial organs, leading to chromosomal aberrations, growth reduction, and inhibition of photosynthesis, transpiration, nitrogen metabolism, nutrient and water uptake, eventually causing plant death (for review, see DalCorso et al., 2008). Plants are challenged not only by cadmium ions themselves, but also by Cd2+-induced harmful effects including oxidative stress (Schützendübel et al., 2001; Olmos et al., 2003; Cho and Seo, 2005; Sharma and Dietz, 2009). The extent of the detrimental effects on plant growth and metabolism depends on the level of cadmium ions present in the surrounding environment and on the plant’s sensitivity to heavy metal stress.Tolerant plants avoid heavy metal uptake and/or induce the expression of genes encoding products involved, directly or indirectly, in heavy metal binding and removal from potentially sensitive sites, by sequestration or efflux (Clemens, 2006). The best-characterized heavy metal binding ligands in plants are thiol-containing compounds metallothioneins and phytochelatins (PCs), whose production is stimulated by Cd2+. PCs bind metal ions and transport them to the vacuole, thus reducing the toxicity of the metal in the cytosol (for review, see Cobbett, 2000; Cobbett and Goldsbrough, 2002). PCs are synthesized from reduced glutathione (GSH). Therefore, production of compounds involved in cadmium detoxification and, at the same time, in cadmium tolerance closely depends on sulfur metabolism. So far, our knowledge on the cellular processes induced by cadmium that lead to changes in sulfur metabolism in plants has been rather limited.Protein kinases and phosphatases are considered major signal transduction elements. However, until now only a few of them have been described to be involved in cadmium stress response or sulfur metabolism. For instance, excessive amounts of cadmium or copper activate mitogen-activated protein kinases (MAPKs) in Medicago sativa (Jonak et al., 2004), rice (Oryza sativa; Yeh et al., 2007), and Arabidopsis (Arabidopsis thaliana; Liu et al., 2010). Studies on rice MAPKs involved in heavy metal stress response indicate that the activity of these kinases depends on the oxidative stress induced by Cd2+. Moreover, Yeh et al. (2007) suggested that the activation of MAPKs in rice by cadmium or copper required the activity of calcium-dependent protein kinase (CDPK) and PI3 kinase, since the MAPK pathways involved in cadmium and copper stress response could be inhibited by a CDPK antagonist (W7) or a PI3 kinase inhibitor (wortmannin). However, so far the function of the identified kinases in plant adaptation to heavy metal pollution has not been established. There is some information concerning an involvement of CDPK in sulfur metabolism (Liu et al., 2006). Soybean (Glycine max) Ser acetyltransferase (GmSerat2;1), the enzyme that catalyzes the first reaction in the biosynthesis of Cys from Ser, is phosphorylated by CDPK. The phosphorylation has no effect on GmSerat2;1 activity, but it renders the enzyme insensitive to the feedback inhibition by Cys (Liu et al., 2006). There is growing evidence that SnRK2s (for SNF1-related protein kinase2) play a role in the regulation of sulfur metabolism. Most information showing a connection between SnRK2s and sulfur metabolism comes from experiments on the lower plant Chlamydomonas reinhardtii (Davies et al., 1999; Irihimovitch and Stern, 2006; González-Ballester et al., 2008, 2010). SNRK2.1 is considered a general regulator of S-responsive gene expression in C. reinhardtii (González-Ballester et al., 2008).In higher plants the SnRK2 family members are known to be involved in plant response to drought, salinity, and in abscisic acid (ABA)-dependent plant development (Boudsocq and Laurière, 2005; Fujii et al., 2007, 2011; Fujii and Zhu, 2009; Fujita et al., 2009; Nakashima et al., 2009; Kulik et al., 2011). Ten members of the SnRK2 family have been identified in Arabidopsis and in rice (Boudsocq et al., 2004; Kobayashi et al., 2004). All of them, except SnRK2.9 from Arabidopsis, are rapidly activated by treatment with different osmolytes, such as Suc, mannitol, sorbitol, and NaCl, and some of them also by ABA. Results presented by Kimura et al. (2006) suggest that in Arabidopsis, similarly to C. reinhardtii, some SnRK2s are involved in the regulation of S-responsive gene expression and O-acetyl-l-Ser accumulation under limited sulfur supply, indicating that also higher plants’ SnRK2s could be involved in sulfur metabolism.As it was mentioned before, oxidative stress induced by cadmium ions significantly contributes to the metal toxicity. Reactive oxygen species (ROS) can be produced in many different reactions in various compartments of the cell in response to cadmium (Romero-Puertas et al., 2004; Heyno et al., 2008; Tamás et al., 2009). The best-characterized ROS-generating enzymes that take part in the response to cadmium are the plasma-membrane-bound NADPH oxidases (Olmos et al., 2003; Romero-Puertas et al., 2004; Garnier et al., 2006). There are some indications that plant NADPH oxidases are phosphorylated by SnRK2s (Sirichandra et al., 2009), therefore it is highly plausible that SnRK2s play a role in the regulation of ROS accumulation in plants subjected to cadmium stress. Taking into consideration all facts mentioned above we hypothesized that SnRK2s could be involved in the plant response to stress induced by cadmium ions. To verify this conjecture, we analyzed the activity and potential role of selected SnRK2s, in tobacco (Nicotiana tabacum) cells and Arabidopsis plants, in the response to cadmium ions.  相似文献   
38.
A general mechanism for how intracellular signaling pathways in human pluripotent cells are coordinated and how they maintain self-renewal remain to be elucidated. In this report, we describe a signaling mechanism where PI3K/Akt activity maintains self-renewal by restraining prodifferentiation signaling through suppression of the Raf/Mek/Erk and canonical Wnt signaling pathways. When active, PI3K/Akt establishes conditions where Activin A/Smad2,3 performs a pro-self-renewal function by activating target genes, including Nanog. When PI3K/Akt signaling is low, Wnt effectors are activated and function in conjunction with Smad2,3 to promote differentiation. The switch in Smad2,3 activity after inactivation of PI3K/Akt requires the activation of canonical Wnt signaling by Erk, which targets Gsk3β. In sum, we define a signaling framework that converges on Smad2,3 and determines its ability to regulate the balance between alternative cell states. This signaling paradigm has far-reaching implications for cell fate decisions during early embryonic development.  相似文献   
39.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be 'Gram-positive,' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be 'Gram-negative.' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   
40.
The impulse activity of bulbar respiratory neurons and the electrical activity of main respiratory muscles were studied stereotaxically and electromyographically on 21 male and female cats anesthetized with pentobarbital (40 mg/kg, i.p.) during defensive respiratory (expiratory and coughing) reflexes. During stimulation of laryngopharyngeal and tracheobronchial receptors, a pronounced focus of excitation appears in the bulbar respiratory centre, its peripheral manifestation being powerful electrical activity of expiratory muscles (expiratory reflex) or of both expiratory and inspiratory muscles (coughing). Respiratory defensive reflexes are very powerful and stable and are retained in hypercapnia and hypoxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号